7.2 ACID-RASE TITRATIONS

Objective

At the end of this topic, students should be able to:
a) Describe the titration process and distinguish between the end point and equivalent point.
b) Perform calculations involving titration between a strong acid and a strong base.
c) Sketch and interpret the variation of pH against titre value for titrations between:

- strong acid and strong base
- strong acid and weak base
- weak acid and strong base
d) Identify suitable indicators for acid-base

ACID - BASE TITRATION

Equivalence point

End point

Indicator

Titrant

DEFINITIONS

Point at which both acid \& base exactly neutralise each other
(no.of moles of $\mathrm{OH}^{-}=$no. of moles of H^{+})
Point at which the indicators changes colour

Organic dyes whose colour depends on the pH of the solution

Solution added from the burette

Titration Endpoint

before endpoint

endpoint

past endpoint

* Titration : analytical technique to determine the volume of an acid (or base) of known concentration that is necessary to exactly neutralise a sample of base (or acid)
- The equivalence point can be determined by:
* pH measurement
* indicator
- 2 types of acid-base indicators:
* wealk acid indicator
* wealk base indicator

INDICATOR

* To be an effective indicator, the acid and it's conjugate base must have distinctive colour
- General example :
$H I n(a q) \rightleftharpoons H^{+}(a q)+\ln ^{-}(\mathrm{qq})$
acid
(X colour)
conjugate base
(Y colour)
- in acidic medium :
* $\left[\mathrm{H}^{+}\right]$is high
* equilibrium position shift to the left
* x colour appear
- in basic medium :
* $\left[\mathrm{H}^{+}\right]$is low
* equilibrium position shift to right
* y colour appear

CHOOSING AN INDICATOR

* Main objective of titration :
* to match the end point with the equivalence point
* therefore the determination of solution's molarity is accurate
*) Matching is achieved by choosing a suitable indicator i.e. colour changes of the indicator occurs over a pH range which includes the pH of the equivalence point

TYPES OF TITRATION

TITRATION	EQUIVALENCE POINT	RANGE of pH	SUITABLE INDICATOR
Strong acid- strong base	pH 7	$3-10$	Any indicator
Strong acid- weak base	$\mathrm{pH}<7$	$3-11$	Methyl orange Methyl red
Weak acid- strong base	$\mathrm{pH}>7$	$7-11$	Phenolphthalein Thymol blue
Weak acid- weak base	Not obvious	Not obvious	Not obvious

pH Calculation for Acid-Base Titration

1. Strong Acid - Strong Base Titrations

Example 1:

Consider the addition of 0.10 M NaOH solution (from a burette) to an Erlenmeyer flask containing 25.00 mL of 0.10 M HCl . Calculate the pH of the solution :
a) before the titration begin (before the addition of NaOH)
b) after the additon of 24.00 mL of 0.10 M NaOH
c) after the addition of 25.00 mL of 0.10 M NaOH
d) after the addition of 35.00 mL of 0.10 M NaOH

Solution:

a) Before the titration begins, only HCl contained in the Erlenmeyer flask. HCl is a strong acid, therefore it ionizes completely.
Initial concentration of $\mathrm{HCl}=0.10 \mathrm{M}$

$$
\mathrm{HCl}_{(a q)} \rightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}{ }_{(a q)}
$$

$$
\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}
$$

b) After addition of 24.00 mL 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{()}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

$\begin{aligned} & \mathrm{V}_{\text {total }}= \\ &=\end{aligned}$
The pH solution is calculated from the amount of HCl left after partial neutralization
c) After addition of 25.00 mL 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

$\begin{aligned} & \mathrm{V}_{\text {total }}= \\ &=\end{aligned}$
The calculation involves a complete neutralization reaction:

d) After addition of 35.00 mL 0.10 M NaOH

$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

pH solution is determined from the amount of NaOH left;

Example 2:

A 25.00 mL sample of 0.10 M HCl is titrated with 0.1 M NaOH .
Calculate the pH of the solution:
i. before the addition of NaOH
ii. after the addition of 10.0 mL of NaOH
iii. after the addition of 24.9 mL of NaOH
iv. at the equivalence point
v. after the addition 25.1 mL of NaOH
vi. after the addition of 35.0 mL of NaOH

Sketch the titration curve

Solution:

i. pH before the addition of 0.10 M NaOH

Dissociation equation of HCl :

$$
\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{Cl}_{(a q)}^{-}
$$

ii. pH after the addition of 10.0 mL of 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

$\begin{aligned} \mathrm{V}_{\text {total }} & = \\ & =\end{aligned}$
The pH solution is calculated from the amount of HCl left after partial neutralization;
iii. pH after the addition of 24.9 mL of 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

$\begin{aligned} \mathrm{V}_{\text {total }} & = \\ & =\end{aligned}$
The pH solution is calculated from the amount of HCl left after partial neutralization;
iv. pH at the equivalence point
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

The calculation involves a complete neutralization reaction.

$$
\mathrm{NaCl}_{(a q)} \rightarrow \underbrace{\mathrm{Na}^{+}{ }_{(a q)}+\mathrm{Cl}^{-}}_{\text {(does not undergo hydrolysis) }}{ }_{(a q)}
$$

The pH solution is calculated from the dissociation of water.
v. pH after the addition of 25.1 mL of 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(1)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			

$\begin{aligned} & \mathrm{V}_{\text {total }}= \\ &=\end{aligned}$
The pH solution is determined from the amount of NaOH left.
vi. pH after the addition of 35.0 mL of 0.10 M NaOH
$\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

n_{0}			
n_{Δ}			
$n_{\text {final }}$			
[]$_{\text {final }}$			
$\mathrm{v}_{\text {total }}=$			
$=$			

The pH solution is determined from the amount of NaOH left.

The titration curve for strong acid-strong base titration

THE ACID-BASE TITRATION CURVE

\times Is a graph of pH versus volume of the titrant
\times Steps in sketching a titration curve
© Calculate the pH of the solution in conical flask
@ Calculate the volume of titrant required to neutralise the solution in the flask
Can be determined from the chemical equation for the neutralisation reaction
© Determine the type of titration, therefore the pH change at equivalence point can be stated
© Draw a sharp vertical line to show the sudden pH change at end point

1. STRONG ACID-STRONG BASE TITRATION

$\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{()}+\mathrm{NaCl}_{(a q)}$

The net ionic equation,

$$
\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

The Titration Curve

Curve for a strong acid-strong base titration

Suitable indicators for strong acidstrong base titration

2. WEAK BASE - STRONG ACID TITRATION

3. WEAK ACID - STRONG BASE TITRATION

Some Common Acid-Base Indicators

	Colour		
Indicator	In Acid	In Base	pH Range *
Methyl orange	Orange	Yellow	$3.1-4.4$
Bromophenol blue	Yellow	Bluish Purple	$3.0-4.6$
Methyl red	Red	Yellow	$4.2-6.3$
Litmus	Red	Blue	$5.0-8.0$
Bromothymol blue	Yellow	Blue	$6.0-7.6$
Cresol Red	Yellow	Red	$7.2-8.8$
Phenolphthalein	Colourless	Reddish pink	$8.3-10.0$
Alizarin yellow	Yellow	Red	$10.1-12.0$

*The pH range is defined as the range over which the indicator changes from the acid colour to the base colour.

Summary

Type of Titration

End point
pH Range

Strong Acid- Strong Base

Weak Acid - Strong Base
Strong Acid- Weak Base
example
Which indicator(s) would you use for a titration of HNO_{2} with KOH ?

HNO_{2} : Weak acid KOH : Strong base
Titration between weak acid / strong base
\therefore End point pH range

Table 16.1 Some Common Acid-Base Indicators

	C o lo r		
Indicator	In Acid	In Base	
pH Range*			
Thymol blue	Red	Yellow	$1.2-2.8$
Bromophenol blue	Yellow	Bluish purple	$3.0-4.6$
Methyl orange	Orange	Yellow	$3.1-4.4$
Methyl red	Red	Yellow	$4.2-6.3$
Chlorophenol blue	Yellow	Red	$4.8-6.4$
Bromothymol blue	Yellow	Blue	$6.0-7.6$
Cresol red	Yellow	Red	$7.2-8.8$
Phenolphthalein	Colorless	Reddish pink	$8.3-10.0$

PRACTICE EXERCISE

1. In an acid-base titration, 10 mL of 0.45 M HCl was added to 40 mL of 0.10 M NaOH . Calculate the pH of the solution. (ans: з.3)
2. What is the pH of a solution consisting of 9.60 mL of 0.1 M NaOH and 10.00 mL of 0.1 M HCl ? (ANs: 4.4)
3. Define equivalence point and end point of a titration. Why must the end point the same as equivalence point for a titration?

Exercise:

What is the colour of the solution when 3 drops of the below indicators are added seperately to water $\mathrm{pH}=7$?
Indicator pH range Colour Change

Phenolphthalein	$8.2-10.0$	Colourless \rightarrow Reddish pink
Methyl orange	$3.2-4.2$	Red \rightarrow Yellow
Bromothymol blue	$6.0-7.6$	Yellow \rightarrow Blue
Phenol Red	$6.8-8.4$	Yellow \rightarrow Red

