CHEMISTRY ENGINEERING KEDAH TECHNICAL MATRICUATION COLLEGE CHEMISTRY SYLLABUS

CHAPTER 7: IONIC EQUILIBRIUM (11 HOURS)

7.1 Acids and Bases7.2 Acid – Base Titrations

CHAPTER 8.0 : THERMOCHEMISTRY (7 HOURS)

8.1 Concept of Enthalphy8.2 Calorimetry8.3 Hess's law8.3 Born-Haber Cycle

CHAPTER 9.0: ELECTROCHEMISTRY (10 HOURS)

9.1 Galvanic Cell

9.2 Nernst Equation

9.3 Electrolytic Cell

CHAPTER 10.0 REACTION KINETICS (9 HOURS) 10.1 Reaction Rate 10.2 Collision Theory & Transition State Theory 10.3 Factors Affecting Reaction Rate

CHAPTER 11.0 ORGANIC CHEMISTRY (8 HOURS)

11.1 Introduction 11.2 Molecular & Structural Formulae 11.3 Functional Groups & Homologous Series 11.4 Reaction of Organic Compound 11.5 Isomerism

12.0 HYDROCARBON (10 HOURS)

12.1 Alkanes 12.2 Alkenes 12.3 Introduction to Aromatic Compounds

13.0 POLYMER (2 HOURS)

CHEMISTRY 'A'

- **S** Standard : Piawaian/peraturan
- I Inovasi : Kreativiti
- K Kesinambungan : Penambahbaikan
- A Amalan : Soalan tuto/workshop
- P Prosedur : Teknik belajar

CHAPTER 7: IONIC

EQUILIBRIA

7.1 ACIDS 8 BASES

Objective

At the end of this topic, students should be able to:

- a) Define acid and base according to the Arrhenius, Bronsted-Lowry and Lewis theories.
- b) Define and identify conjugate acid and conjugate base according to Bronsted-Lowry theory.

<u>IONIC EQUILIBRIA</u>

Theory of acids and bases - Arrhenius theory,

Bronsted-Lowry theory (Conjugate acid-base pairs)
Lewis Theory

ACIDS AND BASES

Properties of acids

- Turn blue litmus paper to red
- React with metal oxides
 - : formed salts and H₂O
- React with reactive metals
 - : formed salts and H₂
- React with carbonates
 - and hydrogen carbonates
 - : formed salt, H₂O and

CO

Properties of bases

Turn red litmus paper to blue

React with acids :

formed salts and H₂O

1. ARRHENIUS THEORY OF ACIDS & BASES

Arrhenius Theory of an acid

Definition :

Arrhenius Theory of a **base**

NaOH (aq) \longrightarrow Na⁺ (aq) + OH⁻ (aq) Ba(OH)₂ (aq) \longrightarrow Ba²⁺ (aq) + 2OH⁻ (aq)

However, Arrhenius's Theory has it's limitations:

- applicable to compounds containing hydrogen and hydroxide
- restricted to aqueous solution
- Cannot be used for reaction in gaseous phase
- Hence, to overcome the shortcoming, J.N.

BrØnsted & T.M. Lowry put forward their theory

2. BRONSTED-LOWRY THEORY OF ACIDS

AND BASES

Definition :

Examples : $HCI_{(g)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$ $CH_3COOH_{(l)} + H_2O_{(l)} \longrightarrow CH_3COO^-_{(aq)} + H_3O^+_{(aq)}$ **Brønsted-Lowry** Theory of a base

Definition :

Examples :

$$HCI_{(g)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + CI^-_{(aq)}$$

$$CH_{3}COOH_{(l)} + H_{2}O_{(l)} \longrightarrow CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$$

Extension of BrØnsted-Lowry acids-bases definition:

- conjugate acid-base pair
- every BrØnsted-Lowry acid has a conjugate base
- every BrØnsted-Lowry base has a conjugate acid
- when an acid loses a proton : conjugate base is produced
- when a base accepts proton : conjugate acid is produced

Identify acid, base, conjugate acid and conjugate base for the following reactions :

i.
$$NH_4^+{}_{(aq)} + H_2O_{(l)} \implies NH_3{}_{(aq)} + H_3O^+{}_{(aq)}$$

ii. $CO_3^{2^-}{}_{(aq)} + H_2O_{(l)} \implies HCO_3^-{}_{(aq)} + OH^-{}_{(aq)}$
iii. $C_2H_5O^-{}_{(aq)} + H_2O_{(l)} \implies C_2H_5OH_{(aq)} + OH^-{}_{(aq)}$

	Acid	Base	Conjugate acid	Conjugate base
o ID M CI O				
ali				

3. LEWIS THEORY OF ACIDS & BASES

The Arrhenius and BrØnsted-Lowry theories are

further extended by G.N. Lewis

Example of Lewis acids

- Cations of metals from Groups 1 & 2 (eg: Li⁺, Ca²⁺)
- Cations of transition metals (eg: Cu²⁺, Fe³⁺)
- Molecules whose central atom with incomplete octet (eg: Al in AICl₃, B in BF₃)
- Molecules whose central atom has 1/more

multiple covalent bonds (eg: C in CO₂; O=C=O)

Example of Lewis bases

All anions which have a lone pair to be donated (eg: OH, Br, CN)

Molecules whose central atom has a lone pair to be donated (eg: N in $NH_3 \& O$ in H_2O)

Molecules with multiple covalent bonds between

2 carbon atoms (eg: C=C)

Identify the Lewis acid and Lewis base in the following reactions :

- i. $CI_2 + AICI_3 \longrightarrow CI^+ + AICI_4^-$
- ii. SO_3 + $CaO \longrightarrow CaSO_4$
- iii. $B(OH)_3 + H_2O \implies B(OH)_4 + H^+$

	Acid	Base
ers		
answo		

Objective

At the end of this topic, students should be able to:

- c) Define pH and pOH.
- d) Relate pH and pOH to the ionic product of water, K_w at 25°C.
- e) Define strong acid and base, weak acid and base.
- f) Relate the strength of a weak acid and and a weak base to the respective dissociation constants, K_a and K_b.
- g) Perform calculation involving pH, dissociation constant, initial concentration, equilibrium concentration and the degree of dissociation, α.

pH is defined as :

$$pH = - \log [H^+]$$

- used to measure the $[H^+]$ or $[H_3O^+]$

$$pOH = - \log [OH^{-}]$$

- used to measure the [OH⁻]

DISSOCIATION CONSTANT OF WATER

- H₂O molecules can both act as an acid and act as a base
- Auto-ionisation process of H₂O molecules

 $H_2O_{(l)} + H_2O_{(l)} \implies OH^-_{(aq)} + H_3O^+_{(aq)}$ At equilibrium : $K_c = \frac{[OH^-][H_3O^+]}{[H_2O]^2}$

 H_2O is a pure liquid \therefore [H_2O] is a constant

$K_c \times [H_2O]^2 = [OH^-][H_3O^+]$

The dissociation constant for water; Symbol : K_w

$$\therefore K_{W} = [OH^{-}] [H_{3}O^{+}]$$

At 25°C:

 $[OH^{-}] = [H_{3}O^{+}] = 1 \times 10^{-7} \text{ mol dm}^{-3}$ $\therefore \text{ At 25^{\circ}C} \quad K_{w} = (1 \times 10^{-7}) \times (1 \times 10^{-7})$ $= 1 \times 10^{-14} \text{ mol}^{2} \text{ dm}^{-6}$

$$K_w = [OH^{-}][H_3O^{+}] = 1 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$$

- $-\log K_w = -\log ([OH^-][H_3O^+]) = -\log 1 \times 10^{-14}$
- $-\log K_w = -\log [OH^-] \log [H_3O^+] = -\log 1 \times 10^{-14}$

$$pK_w = pOH + pH = 14$$

THE STRENGTH OF ACIDS AND BASES

- The relative strength of acids and bases can be compared based on :
 - **degree of dissociation (** α **) in water**
 - the fraction of the total amount of the
 molecules @ ions that has split into smaller
 molecules @ ions in a reaction
 - dissociation constant

STRONG ACIDS

α = 1 @ 100%

[H⁺] or [H₃O⁺] can be obtained from the original concentration of the acid

i. HNO_3 iii. HCI v. HIii. H_2SO_4 iv. HBr

STRONG BASES

Calculate the pH of the following solution :

- 1. An aqueous solution contains 0.700g NaOH in 485 mL H_2O , where NaOH is a strong base.
- 2. A solution of 5.0 x 10^{-3} M H₂SO₄.

1. $NaOH_{(aq)} \longrightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$

$pOH = -\log[OH^{-}]$

pOH + pH = 14

2. $H_2SO_{4(aq)} \longrightarrow 2H^+_{(aq)} + SO_4^-_{(aq)}$

WEAK ACIDS AND WEAK BASES

- dissociate partially in water
- $\alpha = < 1$ @ < 100%

DISSOCIATION CONSTANT FOR WEAK ACIDS

Consider the following general equation :

$$HA_{(aq)} + H_2O_{(aq)} \iff H_3O^+_{(aq)} + A^-_{(aq)}$$

At equilibrium :

$$K_{c} = \frac{[H_{3}O^{+}][A^{-}]}{[HA][H_{2}O]}$$

[H₂O] is constant

$$\mathsf{K}_{\mathsf{c}} \times [\mathsf{H}_{2}\mathsf{O}] = \frac{[\mathsf{H}_{3}\mathsf{O}^{+}][\mathsf{A}^{-}]}{[\mathsf{H}\mathsf{A}]}$$

$$K_{c} \times [H_{2}O] = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
$$K_{\alpha} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$

$$\therefore pK_a = - \log K_a$$

● For weak acids :

- $\stackrel{\$}{\sim}$ α value is less than 1 @ less than 100%
- $[H_3O^+]$ is **less than** [acid]
- $[H_3O^+]$ can be calculated as follows :

Given, the $[HA]_{o}$ =

		— 11 ₃ 0	~
[] _o			
Δ			
[] at equilibrium			

 $HA + HO \rightarrow HO^{+}$

⊥ ∧-

The ionisation expression is;

$$K_{\alpha} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
$$= \frac{(\varkappa) \times (\varkappa)}{\alpha - \varkappa}$$

If \mathcal{K}_{α} and α were given, value of \varkappa can be found. Since $\varkappa = [H_3O^+]$

Thus, $pH = -log [H_3O^+]$

For weak acid,

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
$$= \frac{(\kappa) \times (\kappa)}{\sigma - \kappa}$$

Assume HA is a weak acid, \swarrow is too small; \swarrow <<1;

 $\therefore [\mathsf{HA}] = \alpha - \varkappa \approx \alpha$

Thus the expression can be simplified:

 $K_a =$

EQULIBRIUM CALCULATIONS WHEN K_a IS VERY SMALL

The concentration change (x) can often be neglected.

$$[A]_{initial} - x = [A]_{equilibrium} \approx [A]_{initial}$$

Note: You must check that the assumption is justified or not.

Calculate

- i. pK_a
- ii. pH
- iii. Degree of association

of 0.01 mol dm⁻³ nitrous acid, HNO₂

 $(K_a = 5.1 \times 10^{-6} \text{ mol dm}^{-3})$

$HNO_2 + H_2O \implies H_3O^+ + NO_2^-$

[] _o		
Δ		
[] at equilibrium		

iii) Degree of dissociation, α

SUMMARY OF K_a

- Solution \mathbb{R}_a is small, α is low, \therefore the strength of the acid is
- When K_a is small, pK_a value is
- The bigger the K_a, the
- $\stackrel{\texttt{S}}{\stackrel{\texttt{S}}{\stackrel{\texttt{S}}{=}}}$ The smaller the pK_a, the
- $\stackrel{\texttt{S}}{\approx}$ K_a is affected by

DISSOCIATION CONSTANT FOR WEAK BASES

Consider the following general equation :

$$B + H_2O \implies BH^+ + OH^-$$

At equilibrium :

$$\begin{aligned} \mathsf{K}_{\mathsf{c}} &= \frac{[\mathsf{B}\mathsf{H}^+][\mathsf{O}\mathsf{H}^-]}{[\mathsf{B}][\mathsf{H}_2\mathsf{O}]} & [\mathsf{H}_2\mathsf{O}] \text{ is constant} \\ \\ \hline \mathsf{K}_{\mathsf{c}} &\times [\mathsf{H}_2\mathsf{O}] &= \frac{[\mathsf{B}\mathsf{H}^+][\mathsf{O}\mathsf{H}^-]}{[\mathsf{B}]} \end{aligned}$$

$$K_{c} \times [H_{2}O] = \frac{[BH^{+}][OH^{-}]}{[B]}$$

 $K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$

$$pK_b = -\log K_b$$

- $\stackrel{\$}{\sim} \alpha$ value is less than 1 @ less than 100%
- [OH⁻] is less than [bases]
- [OH⁻] can be calculated as follows :

Given, the $[B]_{o} = \alpha mol dm^{-3}$

	В	+	H ₂ O	\	BH⁺ ·	• OH ⁻
[] _o						
Δ						
[] at equilibrium						

The ionisation expression is;

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$
$$= \frac{(\chi) \times (\chi)}{\alpha - \chi}$$

If \mathcal{K}_b and α were given, value of \varkappa can be found. Since $\varkappa = [OH^-]$

Thus, pH = 14 - pOH; where $pOH = - \log [OH^{-}]$

For weak base,

$$K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$$
$$= \frac{(\chi) \times (\chi)}{\alpha - \chi}$$

Assume B is a weak base , \varkappa is too small; \varkappa <<1;

$$\therefore [\mathsf{B}] = \alpha - \varkappa \approx \alpha$$

Thus the expression can be simplified:

 $K_b =$

Calculate the pH value of 0.1 mol dm⁻³ NH_2OH

 $(K_{b} = 9.1 \times 10^{-9} \text{ mol dm}^{-3})$

	NH ₂ OH _(aq)	+ H ₂ O _(l)	► NH ₃ OH	+ _(aq) + OH ⁻ (aq
[] _o				
Δ				
[] at equilibrium				

GUIDELINE IN PROBLEM SOLVING RELATED TO WEAK ACIDS @ BASES

- Write the dissociation equation of the weak acid/base
 - Dissociate partially
- Tabulate the data
 - Enter the []_o of all species
 - Setting the Δ in []
 - Write the [] at equilibrium
- Enter the [] at equilibrium into K_a @ K_b expression
- **Solve for** x **by assuming** a x = a
- Determine [H+] @ [OH-] & pH value

For ethanoic acid, CH_3COOH of 0.5M, determine : i. $[H^+]$ ii. α iii. pH $(K_a CH_3COOH = 1.8 \times 10^{-5}M)$

Given, at 25°C, 0.15M $C_4H_9NH_2$ solution, pH = 12. Determine

- i. K_b
- ii. α

 $C_4H_9NH_2 + H_2O \implies C_4H_9NH_3^+ + OH^-$

At 25°C, 0.1 M formic acid, HCOOH was dissociated at 4.2% in aqueous solution. Determine the K_a and pK_a of the formic acid

Determine the pH of 0.1 M CH₃COOH solution with $K_a = 1.85 \times 10^{-5}$ M at 25°C

RELATIONSHIP BETWEEN K_a AND K_b

consider the following conjugate acid-base pair

$$NH_4^+_{(aq)} + H_2O_{(l)} \iff NH_3_{(aq)} + H_3O^+_{(aq)}$$

$$\begin{array}{rcl} \mathsf{NH}_4{}^+{}_{(aq)} \ + \ \mathsf{H}_2\mathsf{O}_{(l)} & \longrightarrow \ \mathsf{NH}_3{}_{(aq)} \ + \ \mathsf{H}_3\mathsf{O}{}^+{}_{(aq)} \\ acid & & & \\ conjugate \\ base \end{array}$$

$$K_{\alpha} = \frac{[NH_{3}][H_{3}O^{+}]}{[NH_{4}^{+}]}$$

For reverse reaction :

 NH_3 (aq) + H_2O (l) $\longrightarrow NH_4^+$ (aq) + OH^- (aq)

base

conjugate acid

$$\mathsf{K}_{\mathsf{b}} = \frac{[\mathsf{NH}_4^+][\mathsf{OH}^-]}{[\mathsf{NH}_3]}$$

net reaction = forward reaction x reverse reaction

$$= K_a \times K_b$$

$K_{\alpha} \times K_{b}$ =

Objective

At the end of this topic, students should be able to:

- h) Explain salt hydrolysis equation for the salt formed from the reaction between:
 - strong acid and strong base
 - strong acid and weak base
 - weak acid and strong base

i) Classify the slats as neutral, acidic or basic.

PROPERTIES OF SALT

an ionic compound

- formed when an acid neutralises a base
- are strong electrolytes; i.e. completely dissociate
 to form ions in H₂O

classified as neutral, acidic or basic salt through
 hydrolysis process

• Hydrolysis : a chemical reaction between anion and/or cation of a salt, with H_2O

- Occurs when weak acid reacts with strong base @ strong acid with weak base
- either cations @ anions are hydrolyse

PH of solution : depends on whether the cation or anion of the salt is hydrolysed

 $\begin{array}{rcl} \mathsf{MX} & \longrightarrow & \mathsf{M^+} + \mathsf{X^-} \\ salt \end{array}$

If cation, M⁺ is hydrolysed : $M^+ + H_2O \longrightarrow MOH + H^+$ $\therefore H^+$ presence ; acidic solution is obtained

If anion, X⁻ is hydrolysed : $X^- + H_2O \implies HX + OH^ \therefore OH^-$ presence ; basic solution is obtained

SALT OBTAINED FROM STRONG ACID + STRONG BASE

- formed neutral salt
- pH of salt solution = 7
- neutral salt : NaCl, Na₂SO₄, KNO₃
- \bullet eg : HCI + NaOH \longrightarrow NaCI + H₂O

- \bullet completely dissociate; i.e. NaCl \longrightarrow Na⁺ + Cl⁻
- cation & anion : do not hydrolyse

SALT OBTAINED FROM STRONG ACID + WEAK BASE

formed acidic salt

- acidic salt : NH₄CI, CuSO₄
- \bullet eg : HCI + NH₃ \longrightarrow NH₄CI

Issociation :
$$NH_4CI \longrightarrow NH_4^+ + CI^-$$
Image: Cation : hydrolyse in H_2O
NH₄⁺ + H₂O ⇒ NH₃ + H₃O⁺
Image: PH < 7

SALT OBTAINED FROM WEAK ACID + STRONG BASE

formed basic salt

- \bullet basic salt : CH₃COONa, Na₂CO₃, KCN, Na₂SO₃
- eg : $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$

- \bullet dissociation : CH₃COONa \longrightarrow CH₃COO⁻ + Na⁺
- Image: Second statement of the second statement o

SUMMARY

Type of acid/base	Type of salt	Species which hydrolyse	pH solution	Examples
strong acid + strong base	neutral	none	7	NaCl, Kl, KNO ₃ , NaSO ₄
strong acid + weak base	acidic	cation	< 7	$NH_4Cl,$ $(NH_4)_2CO_3,$ $CuSO_4$
weak acid + strong base	basic	anion	> 7	CH₃COONa, KCN, NaCN, Na₂S