CHEMISTRY ENGINEERING KEDAH TECHNICAL MATRICUATION COLLEGE CHEMISTRY SYLLABUS

CHAPTER 7: IONIC EQUILIBRIUM (11 HOURS)

7.1 Acids and Bases
7.2 Acid - Base Titrations

CHAPTER 8.0 : THERMOCHEMISTRY (7 HOURS)

8.1 Concept of Enthalphy 8.2 Calorimetry
8.3 Hess's law
8.3 Born-Haber Cycle

CHAPTER 9.0: ELECTROCHEMISTRY (10 HOURS)
9.1 Galvanic Cell
9.2 Nernst Equation
9.3 Electrolytic Cell

CHAPTER 10.0 REACTION KINETICS (9 HOURS)

10.1 Reaction Rate
10.2 Collision Theory \& Transition State Theory 10.3 Factors Affecting Reaction Rate

CHAPTER 11.0 ORGANIC CHEMISTRY (8 HOURS)

11.1 Introduction
11.2 Molecular \& Structural Formulae
11.3 Functional Groups \& Homologous Series
11.4 Reaction of Organic Compound
11.5 Isomerism

12.0 HYDROCARBON (10 HOURS)

12.1 Alkanes
12.2 Alkenes
12.3 Introduction to Aromatic Compounds

CHEMISTRY 'A'

S - Standard : Piawaian/peraturan
I - Inovasi : Kreativiti
K - Kesinambungan : Penambahbaikan
A - Amalan : Soalan tuto/workshop
P - Prosedur : Teknik belajar

CHAPTER 7: IONLC EqULLIRRIA

$$
\begin{gathered}
7.1 \text { ACIDS } \\
\text { \& } \\
\text { BASES }
\end{gathered}
$$

Objective

At the end of this topic, students should be able to:
a) Define acid and base according to the Arrhenius, Bronsted-Lowry and Lewis theories.
b) Define and identify conjugate acid and conjugate base according to Bronsted-Lowry theory.

IONIC EOUILIBRIA

Theory of acids and bases

- Arrhenius theory,
- Bronsted-Lowry theory (Conjugate acid-base pairs)
- Lewis Theory

ACIDS AND BASES

Properties of acids

- Turn blue litmus paper to red
- React with metal oxides
: formed salts and $\mathrm{H}_{2} \mathrm{O}$
- React with reactive metals : formed salts and H_{2}
- React with carbonates and hydrogen carbonates
: formed salt, $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}

Properties of bases

- Turn red litmus paper to blue

React with acids : formed salts and $\mathrm{H}_{2} \mathrm{O}$

1. ARRHENIUS THEORY OF ACIDS \& BASES

Arrhenius Theory of an acid

- Definition:

Examples:
$\mathrm{HNO}_{3}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{NO}_{3}{ }^{-}{ }_{(a q)}$
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\text {aq })}$

Arrhenius Theory of a base

* Definition:

Examples:
$\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

- However, Arrhenius's Theory has it's limitations:
* applicable to compounds containing hydrogen and hydroxide
* restricted to aqueous solution
* \therefore cannot be used for reaction in gaseous phase
* Hence, to overcome the shortcoming, J.N.

BrØnsted \& T.M. Lowry put forward their theory

2. BRONSTED-LOWRY THEORY OF ACIDS AND BASES

BrØnsted-Lowry Theory of an acid

* Definition :

Examples:

$$
\stackrel{\mathrm{HCl}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\stackrel{\downarrow}{\mathrm{Cl}^{-}}{ }_{(\mathrm{aq})}}{ }
$$

$\mathrm{CH}_{3} \mathrm{COOH}_{(1)}+\mathrm{H}_{2} \mathrm{O}_{(I)} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$

BrØnsted-Lowry Theory of a base

© Definition:

Examples:

$\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}+{ }^{-} \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$

EXERCISE

$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{NH}_{4}{ }^{+}($aq $)+\mathrm{OH}^{-}{ }_{(\text {aq })}$
$\mathrm{HSO}_{4}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}\left(\right.$ (l) $+\mathrm{H}_{2} \mathrm{O}_{\text {(I) }}$
\uparrow

Extension of BrØnsted-Lowry acids-bases definition:

- conjugate acid-base pair
* every BrØnsted-Lowry acid has a conjugate base
* every BrØnsted-Lowry base has a conjugate acid
* when an acid loses a proton : conjugate base is produced
* when a base accepts proton : conjugate acid is produced

Example:

$$
\mathrm{CH}_{3} \mathrm{COOH}_{()}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}_{(a q)}^{+}
$$

For forward reaction

$\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$

For reverse reaction
$\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(1)}+\mathrm{H}_{2} \mathrm{O}_{(1)}$

EXERCISE

Identify acid, base, conjugate acid and conjugate base for the following reactions :
i. $\mathrm{NH}_{4}{ }^{+}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{3}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$
ii. $\mathrm{CO}_{3}{ }^{2-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$
iii. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$

$\begin{aligned} & \frac{9}{0} \\ & \ddot{0}^{0} \\ & \stackrel{0}{\omega} \end{aligned}$	Acid	Base	Conjugate acid	Conjugate base

3. LEWIS THEORY OF ACIDS \& BASES

The Arrhenius and BrØnsted-Lowry theories are further extended by G.N. Lewis

Lewis Theory of an acid

Lewis Theory of a bease

Example of Lewis acids

- Cations of metals from Groups $1 \& 2$ (eg: $\mathrm{Li}^{+}, \mathrm{Ca}^{2+}$)
* Cations of transition metals (eg: $\mathrm{Cu}^{2+}, \mathrm{Fe}^{3+}$)
- Molecules whose central atom with incomplete
octet (eg: $A l$ in AlCl_{3}, B in BF_{3})
* Molecules whose central atom has $1 /$ more multiple covalent bonds (eg: C in $\mathrm{CO}_{2} ; \mathrm{O}=\mathrm{C}=\mathrm{O}$)

Example of Lewis bases

* All anions which have a lone pair to be donated
(eg: $\mathrm{OH}^{-}, \mathrm{Br}, \mathrm{CN}^{-}$)
Molecules whose central atom has a lone pair to
be donated (eg: N in $\mathrm{NH}_{3} \& \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$)
- Molecules with multiple covalent bonds between

2 carbon atoms (eg: $C=C$)

EXERCISE

Identify the Lewis acid and Lewis base in the following reactions:
i. $\mathrm{Cl}_{2}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{Cl}^{+}+\mathrm{AlCl}_{4}^{-}$
ii. $\mathrm{SO}_{3}+\mathrm{CaO} \longrightarrow \mathrm{CaSO}_{4}$
iii. $\mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}$

Objective

At the end of this topic, students should be able to:
c) Define pH and pOH .
d) Relate pH and pOH to the ionic product of water, K_{w} at $25^{\circ} \mathrm{C}$.
e) Define strong acid and base, weak acid and base.
f) Relate the strength of a weak acid and and a weak base to the respective dissociation constants, K_{a} and K_{b}.
g) Perform calculation involving pH , dissociation constant, initial concentration, equilibrium concentration and the degree of dissociation, α.

pH SCALE

pH is defined as:

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

- used to measure the $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
pOH is defined as :

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

- used to measure the $\left[\mathrm{OH}^{-}\right]$

DISSOCIATION CONSTANT OF WATER

* $\mathrm{H}_{2} \mathrm{O}$ molecules can both act as an acid and act as a base

Auto-ionisation process of $\mathrm{H}_{2} \mathrm{O}$ molecules

$$
\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{OH}^{-}\left(\mathrm{aq)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}\right.
$$

At equilibrium : $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
$\mathrm{H}_{2} \mathrm{O}$ is a pure liquid $\therefore\left[\mathrm{H}_{2} \mathrm{O}\right]$ is a constant
$\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

The dissociation constant for water; Symbol : K_{w}

$$
\therefore \mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

At $25^{\circ} \mathrm{C}$:
$\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
$\begin{aligned} \therefore \text { At } 25^{\circ} \mathrm{C} \quad \mathrm{K}_{\mathrm{w}} & =\left(1 \times 10^{-7}\right) \times\left(1 \times 10^{-7}\right) \\ & =1 \times 10^{-14 \mathrm{~mol}^{2} \mathrm{dm}^{-6}}\end{aligned}$

- At $25^{\circ} \mathrm{C}$,
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left(\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log 1 \times 10^{-14}$
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{OH}^{-}\right]-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1 \times 10^{-14}$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pOH}+\mathrm{pH}=14$

THE STRENGTH OF ACIDS AND BASES

The relative strength of acids and bases can be compared based on :

* degree of dissociation (α) in water
- the fraction of the total amount of the molecules @ ions that has split into smaller molecules @ ions in a reaction
* dissociation constant

STRONG ACIDS

dissociate completely in water

$$
\underset{\substack{ \\\mathrm{HNO}_{3(\mathrm{aq})}} \underset{\substack{0.5 \mathrm{M}}}{\mathrm{H}^{+}}{ }_{(\mathrm{aq})}^{0.5 \mathrm{M}}+\mathrm{NO}_{3}^{-}(\mathrm{aq})}{ }
$$

$\alpha=1 @ 100 \%$
$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can be obtained from the original concentration of the acid
examples:
i. HNO_{3} iii. HCl v. HI
ii. $\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ iv. HBr

STRONG BASES

dissociate completely in water

$$
\underset{0.1 \mathrm{M}}{\mathrm{NaOH}}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{Na}_{(\text {(aq) }}^{+}+\underset{0.1 \mathrm{M}}{\mathrm{OH}^{-}}
$$

$\alpha=1 @ 100 \%$
[OH^{-}] can be obtained from the original concentration of the base examples:
$\begin{array}{ll}\text { i. } \mathrm{NaOH} & \text { iii. } \mathrm{Mg}(\mathrm{OH})_{2} \\ \text { ii. } \mathrm{KOH} & \text { iv. } \mathrm{Ca}(\mathrm{OH})_{2}\end{array}$

EXAMPLE

Calculate the pH of the following solution :

1. An aqueous solution contains 0.700 g NaOH in $485 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, where NaOH is a strong base.
2. A solution of $5.0 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

SOLUTLON:

1. $\mathrm{NaOH}_{(a q)} \longrightarrow \mathrm{Na}^{+}{ }_{(q q)}+\mathrm{OH}_{(a q)}^{-}$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$\mathrm{pOH}+\mathrm{pH}=14$

SOLUTION:

2. $\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \longrightarrow 2 \mathrm{H}^{+}(a q)+\mathrm{SO}_{4}^{-}(a q)$

WEAK ACIDS AND WEAK BASES

- dissociate partially in water
$\alpha=<1$ @ < 100\%
- $\boldsymbol{\alpha}$ value can be determined by :

DISSOCIATION CONSTANT FOR WEAK ACIDS

Consider the following general equation :

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-}
$$

At equilibrium :

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{H}_{2} \mathrm{O}\right] & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

$$
\begin{array}{r}
\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\therefore \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}
\end{array}
$$

- For weak acids :
* α value is less than 1 @ less than 100% * [$\mathrm{H}_{3} \mathrm{O}^{+}$] is less than [acid]
* $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$can be calculated as follows :

Given, the $[\mathrm{HA}]_{0}=$
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

[]$_{0}$				
Δ				
[] at equilibrium				

The ionisation expression is;

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& =\frac{(x) \times(x)}{a-x}
\end{aligned}
$$

If K_{a} and a were given, value of x can be found. Since $x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Thus, $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

For weak acid,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a}} & =\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& =\frac{(x) \times(x)}{a-x}
\end{aligned}
$$

Assume HA is a weak acid, x is too small; $x \ll 1$;
$\therefore[\mathrm{HA}]=a-x \approx a$
Thus the expression can be simplified:
$\mathrm{K}_{\mathrm{a}}=$

EQULIBRIUM CALCULATIONS WHEN K_{a} IS VERY SMALL

The concentration change (x) can often be neglected.

$$
[A]_{\text {initial }}-x=[A]_{\text {equilibrium }} \approx[A]_{\text {initial }}
$$

Note: You must check that the assumption is justified or not.

CHECK: $\frac{x}{[A]_{\text {initial }}} \times 100<5 \%$ Assumption is OK

$$
\frac{x}{[A]_{\text {initial }}} \times 100>5 \% \text { Assumption is NOT OK }
$$

Calculate

i. pK_{a}

ii. pH
iii. Degree of association of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ nitrous acid, HNO_{2} $\left(\mathrm{K}_{\mathrm{a}}=5.1 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}\right)$

SOLUTION

ii)
$\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-}$

[]$_{0}$				
Δ				
[] at equilibrium				

OR

SOLUTION

iii) Degree of dissociation, α

$$
\alpha_{\text {weak acid }}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {dissociated }}{[\text { acid }] \text { before dissociation }} \times 100 \%
$$

SUMMARY OF K ${ }_{a}$

When \mathbf{K}_{a} is small, $\boldsymbol{\alpha}$ is low, \therefore the strength of the acid is

When K_{a} is small, $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ value is

* The bigger the \mathbf{K}_{a}, the
© The smaller the $\mathbf{p K}_{\mathbf{a}}$, the
* K_{a} is affected by

DISSOCIATION CONSTANT FOR WEAK BASES

Consider the following general equation :

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

At equilibrium :

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \quad\left[\mathrm{H}_{2} \mathrm{O}\right] \text { is constant } \\
\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{H}_{2} \mathrm{O}\right] & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{H}_{2} \mathrm{O}\right] & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
\mathrm{pK}_{b} & =-\log \mathrm{K}_{b}
\end{aligned}
$$

For weak bases :

类 α value is less than 1 @ less than 100%

* [OH^{-}] is less than [bases]
* [OH^{-}] can be calculated as follows :

Given, the $[B]_{0}=a \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-}$

[]$_{0}$				
Δ				
[] at equilibrium				

The ionisation expression is;

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
& =\frac{(x) \times(x)}{a-x}
\end{aligned}
$$

If K_{b} and a were given, value of x can be found. Since $x=\left[\mathrm{OH}^{-}\right]$

Thus, $\mathrm{pH}=14-\mathrm{pOH}$; where $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

For weak base,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{b}} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]} \\
& =\frac{(x) \times(x)}{a-x}
\end{aligned}
$$

Assume B is a weak base, x is too small; $x \ll 1$;
$\therefore[B]=a-x \approx a$
Thus the expression can be simplified:
$\mathrm{K}_{\mathrm{b}}=$

Calculate the pH value of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{2} \mathrm{OH}$ $\left(K_{b}=9.1 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\right)$

SOLUTLON

$\mathrm{NH}_{2} \mathrm{OH}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(I)} \rightleftharpoons \mathrm{NH}_{3} \mathrm{OH}^{+}{ }_{(a q)}+\mathrm{OH}^{-}{ }_{(a q)}$				
[]$_{0}$				
Δ				
[] at equilibrium				

OR

GUIDELINE IN PROBLEM SOLVING RELATED TO WEAK ACIDS @ BASES

* Write the dissociation equation of the weak acid/base
, Dissociate partially
* Tabulate the data
*. Enter the [] o of all species
* Determine the Δ in []
* Write the [] at equilibrium
*. Enter the [] at equilibrium into $K_{a} @ K_{b}$ expression
- Solve for x by assuming $a-x=a$
* Determine [\mathbf{H}^{+}] @ [OH^{-}] \& $\mathbf{p H}$ value

EXERCISE

For ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ of 0.5 M , determine :
i. $\left[\mathrm{H}^{+}\right]$
i. a
iii. pH
$\left(\mathrm{K}_{\mathrm{a}} \mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5} \mathrm{M}\right)$

Given, at $25^{\circ} \mathrm{C}, 0.15 \mathrm{M} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$ solution, $\mathrm{pH}=12$. Determine
i. K_{b}
ii. α
$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{3}{ }^{+}+\mathrm{OH}^{-}$

EXERCISE

At $25^{\circ} \mathrm{C}, 0.1 \mathrm{M}$ formic acid, HCOOH was dissociated at 4.2% in aqueous solution. Determine the K_{a} and pK_{a} of the formic acid

> Determine the pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution with $\mathrm{K}_{a}=1.85 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$

RELATIONSHIP BETWEEN $K_{\underline{q}}$ AND $_{\underline{\underline{b}}}^{\underline{b}}$

consider the following conjugate acid-base pair

$$
\mathrm{NH}_{4}^{+}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{NH}_{3(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}
$$

For forward reaction :

$\mathrm{NH}_{4}{ }^{+}{ }_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{\text {(l) }} \longrightarrow \mathrm{NH}_{3(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}$ acid
conjugate base

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

For reverse reaction :

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
base
conjugate
$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
net reaction $=$ forward reaction \times reverse reaction

$$
=\mathrm{K}_{a} \times \mathrm{K}_{b}
$$

$K_{a} \times K_{b}=$

Objective

At the end of this topic, students should be able to:
h) Explain salt hydrolysis equation for the salt formed from the reaction between:

- strong acid and strong base
- strong acid and weak base
- weak acid and strong base
i) Classify the slats as neutral, acidic or basic.

PROPERTIES OF SALT

* an ionic compound
* formed when an acid neutralises a base
- are strong electrolytes; i.e. completely dissociate to form ions in $\mathrm{H}_{2} \mathrm{O}$

classified as neutral, acidic or basic salt through
hydrolysis process
* Hydrolysis : a chemical reaction between anion and/or cation of a salt, with $\mathrm{H}_{2} \mathrm{O}$

Occurs when weak acid reacts with strong base @ strong acid with weak base

* * either cations @ anions are hydrolyse
pH of solution : depends on whether the cation or anion of the salt is hydrolysed

$$
\underset{\text { salt }}{\mathrm{MX}} \longrightarrow \mathrm{M}^{+}+\mathrm{X}^{-}
$$

If cation, M^{+}is hydrolysed :

$$
\mathrm{M}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{MOH}+\mathrm{H}^{+}
$$

$\therefore \mathrm{H}^{+}$presence ; acidic solution is obtained
If anion, X^{-}is hydrolysed :

$$
\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \quad \mathrm{HX}+\mathrm{OH}^{-}
$$

$\therefore \mathrm{OH}^{-}$presence ; basic solution is obtained

SALT OBTAINED FROM STRONG ACID + STRONG BASE

- formed neutral salt
pH of salt solution $=7$
neutral salt : $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{KNO}_{3}$
eg: $\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
completely dissociate; i.e. $\mathrm{NaCl} \longrightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$
cation \& anion : do not hydrolyse

SALT OBTAINED FROM STRONG ACID + WEAK BASE

© formed acidic salt
-* acidic salt : $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{CuSO}_{4}$
${ }^{*}$ eg : $\mathrm{HCl}+\mathrm{NH}_{3} \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}$

- dissociation: $\mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-}$
* cation : hydrolyse in $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

$\mathrm{pH}<7$

SALT OBTAINED FROM WEAK ACID + STRONG BASE

* formed basic salt
- basic salt: $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KCN}, \mathrm{Na}_{2} \mathrm{SO}_{3}$
${ }^{*}$ eg: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
* dissociation : $\mathrm{CH}_{3} \mathrm{COONa} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$
* anion : hydrolyse in $\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

* $\mathrm{pH}>7$

SUMMARY

Type of acid/base	Type of salt	Species which hydrolyse	pH solution	Examples
strong acid + strong base	neutral	none	7	${\mathrm{NaCl}, \mathrm{KI}, \mathrm{KNO}_{3},}_{\mathrm{NaSO}_{4}}$
strong acid + weak base	acidic	cation	<7	$\mathrm{NH}_{4} \mathrm{Cl}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$, CuSO_{4}
weak acid + strong base	basic	anion	>7	$\mathrm{CH}_{3} \mathrm{COONa}$, $\mathrm{KCN}_{2}, \mathrm{NaCN}$, $\mathrm{Na}_{2} \mathrm{~S}$

