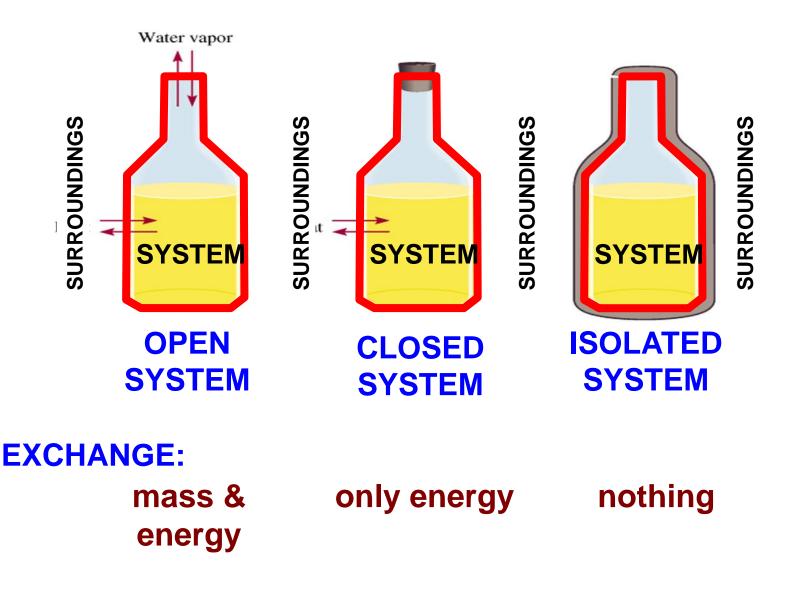


8.0 THERMOCHEMISTRY

- 8.1 Concept of Enthalpy
- 8.2 Calorimetry
- 8.3 Hess's Law
- 8.4 Born-Haber Cycle


THERMOCHEMISTRY

- Thermochemistry is the study of <u>heat/enthalpy changes</u> in chemical reactions.
- Almost all chemical reactions <u>absorb</u> or <u>release</u> heat energy.
- SI unit for heat is joule (J) or kilojoule (kJ).

Important Terms

- <u>Heat</u> is energy transferred between two bodies of different temperatures
- **System** is any specific part of the universe
- <u>Surroundings</u> is everything that lies outside the system

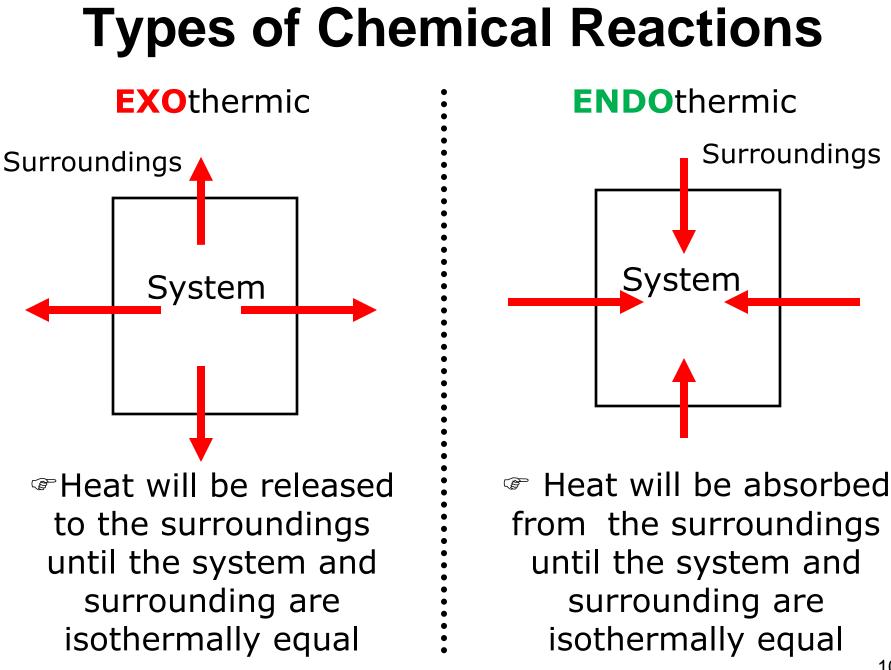
3 types of system:

- <u>Open system</u> is a system that can exchange mass and energy with its surroundings
- <u>**Closed system</u>** is a system that allows the exchange of energy with its surroundings</u>
- <u>Isolated system</u> is a system that does not allow the exchange of either mass or energy with its surroundings
- **Energy** is the ability to do work
 - SI unit of energy is **kg m² s⁻²** or **Joule** (J)
 - Non SI unit of energy is calorie (Cal)
 - -1 Cal = 4.184 J

Objective

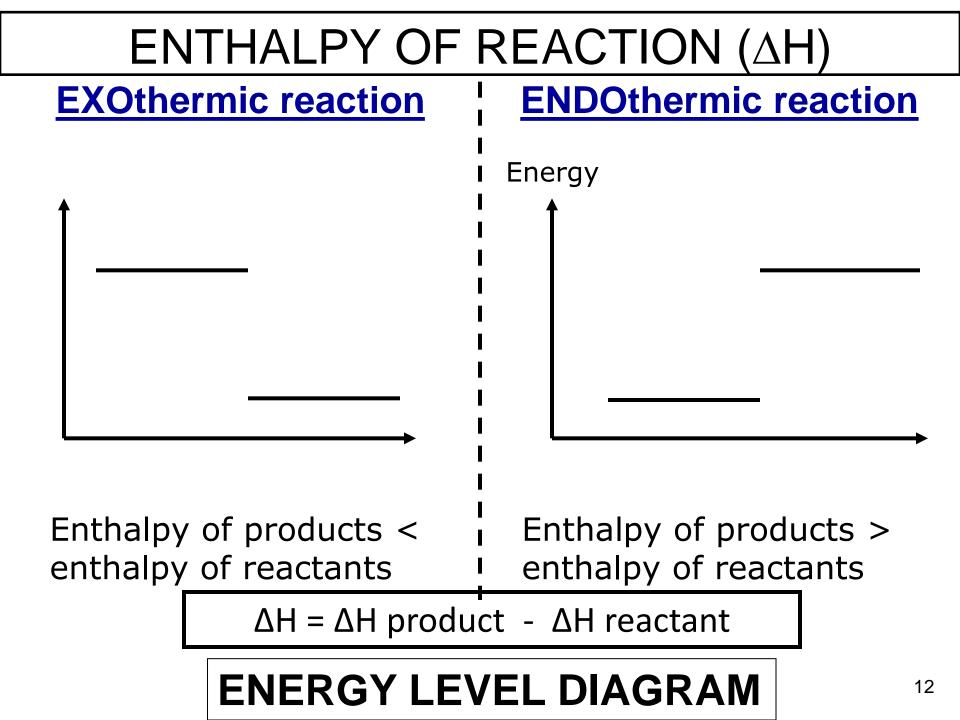
At the end of this topic, students should be able to:

- a) Explain endothermic and exothermic reactions using the energy profile diagrams.
- b) State standard conditions of reaction.
- c) Explain standard enthalpy of reactions.
- d) Define enthalpy of


- Formation, combustion, atomization, neutralization, hydration, solution (dissolution), electron affinity, ionization energy and lattice energy.

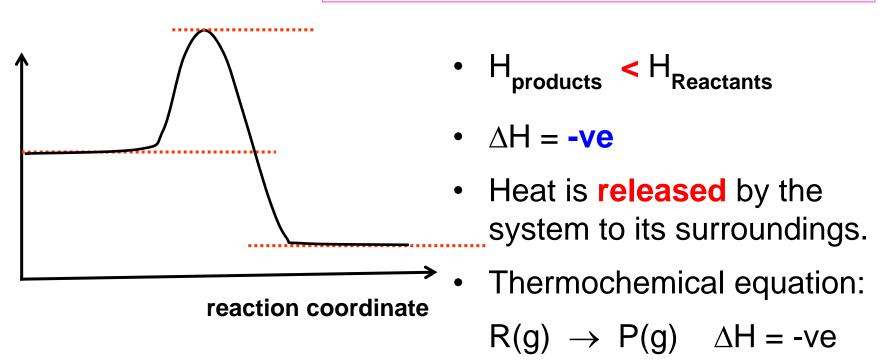
e) Write thermochemical equation for each enthalpy.

8.1 CONCEPT OF ENTHALPY


Thermochemistry

- Two types of chemical reactions:
 - Exothermic
 - Endothermic

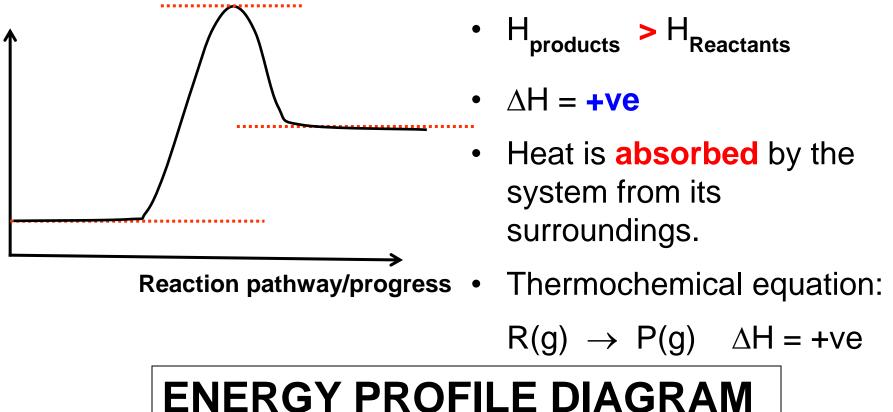
Types of Reactions


EXOthermic	ENDOthermic
Reaction	Reaction
A reaction whereby heat	A reaction whereby heat
energy is <u>released</u> to	energy is <u>absorbed</u>
the surroundings.	from the surroundings.
Enthalpy of products <	Enthalpy of products >
Enthalpy of reactants	Enthalpy of reactants
ΔH is <u>negative</u> , ($\Delta H < 0$)	ΔH is positive , ($\Delta H > 0$)

ENTHALPY OF REACTION (Δ H)

Enthalpy of reaction, ΔH ... is the difference in enthalpy between the products and the reactants.

ΔH = H (products) – H (reactants)



ENERGY PROFILE DIAGRAM

ENTHALPY OF REACTION (Δ H)

Enthalpy of reaction, ΔH ... the difference in enthalpy between the products and the reactants.

$\Delta H = H (products) - H (reactants)$

Weaker bonds are broken while stronger bonds are made

Hence, the energy released is more than the energy absorbed

Example:

 $H_2(g) + O_2(g) → H_2O_2(I)$ $\Delta H = -186 \text{ kJ mol}^{-1}$ Stronger bonds are broken while weaker bonds are made

Hence, the energy absorbed is more than the energy released

Example:

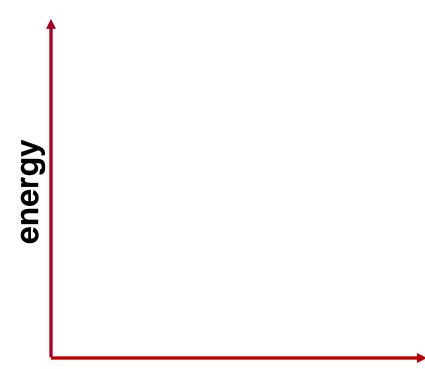
 $H_2O_2(I) \rightarrow H_2O(I) + \frac{1}{2}O_2(g)$ $\Delta H = +287 \text{ kJ mol}^{-1}$

Example 1

Draw the energy level diagram diagram for the reaction:

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Solution:

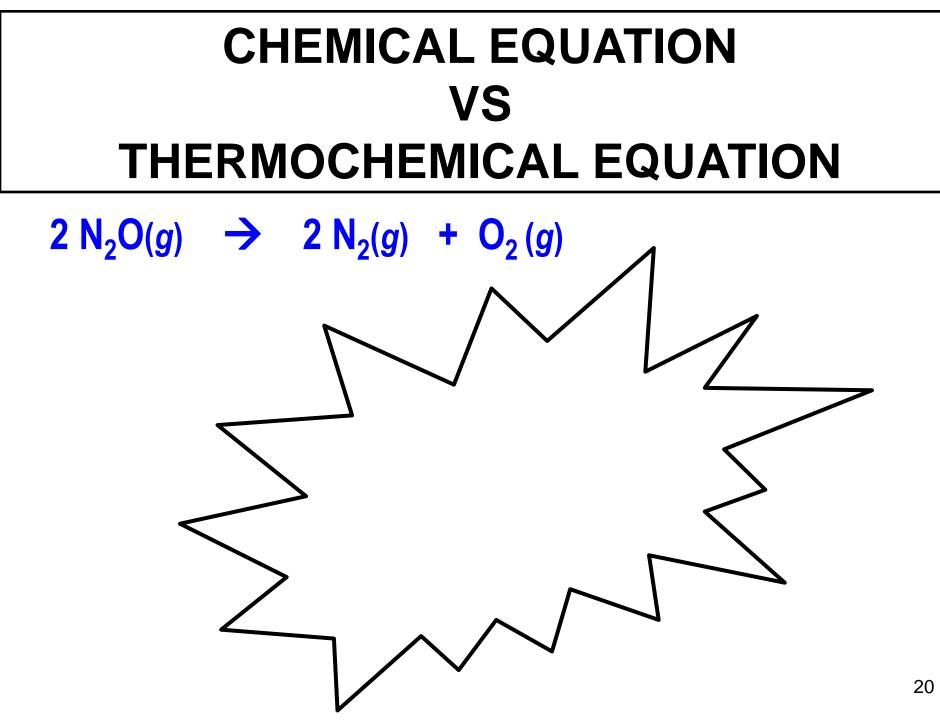


Reaction Progress

Example 2

Draw the energy level diagram for the reaction: $CH_3COOH(l) \rightarrow CH_3COOH(g)$

Solution:


Reaction progress

ENTHALPY, H

- Enthalpy, H refers to the total value of energy of a system <u>at constant pressure</u>.
- Enthalpy cannot be determined directly.
- Only the difference in enthalpy, ΔH, or the enthalpy change between products and reactants can be determined.

STANDARD ENTHALPY, ΔH^{O}

... enthalpy change of a reaction occurs at standard conditions/states: a) temperature: 25°C or 298 K b) pressure: 1 atm most stable allotropes: C) C (graphite) ; S (rhombic)

THERMOCHEMICAL EQUATION

The physical states of all reactants and products as well as enthalpy changes <u>must</u> be specified in thermochemical equations.

H (g) +
$$\frac{1}{2}O(g) \longrightarrow H_2O(\ell)$$
 $\Delta H = -285.8 \text{ kJ mol}^{-1}$
H (g) + $\frac{1}{2}O(g) \longrightarrow H_2O(g)$ $\Delta H = -241.8 \text{ kJ mol}^{-1}$

If you flip the equation, the magnitude of *∆H* remains the same but flip its sign (Lavoisier-Laplace's law)

$$H_2O(s) \rightarrow H_2O(l)$$
 ΔH =
 $H_2O(l) \rightarrow H_2O(s)$ ΔH =

THERMOCHEMICAL EQUATION

- If the thermochemical equation is multiplied by a factor of *n*, then ΔH must also be multiplied by the same factor *n*.
 - $H_2O(s)$ → $H_2O(l)$ $\Delta H = +6.01 \text{ kJ}$ = +12.02 kJ

 $2 \operatorname{N}_2 \operatorname{O}(g) \xrightarrow{} 2 \operatorname{N}_2(g) + \operatorname{O}_2(g) \qquad \Delta H^\circ = -164.10 \text{ kJ}$ $\operatorname{N}_2 \operatorname{O}(g) \xrightarrow{} \operatorname{N}_2(g) + \frac{1}{2} \operatorname{O}_2(g) \qquad \Delta H^\circ = ???$

THERMOCHEMICAL EQUATION

Thermochemical equation shows the enthalpy change as well as the mass or mole relationships.

 $2 N_2 O(g)$ → $2 N_2(g)$ + $O_2(g)$ $\Delta H^\circ = -164.10 \text{ kJ}$

Enthalpy change is directly proportional to the amounts of substances in a system.

Example:

____ of heat released when 2 moles of N₂O decomposed

____ of heat released when 1 mole of N₂O decomposed

Have A GO

From the date given, $W + X \rightarrow Y + Z \qquad \Delta H^{\circ} = -86.0 \text{ kJ}$ $Y + Z \rightarrow S \qquad \Delta H^{\circ} = +20.5 \text{ kJ}$

Calculate the enthalpy change for each of the reaction below:

a) 2Y + 2Z \rightarrow 2W + 2X b) W + X \rightarrow S

Have A GO

Consider the following reaction:

 $2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g) \Delta H^{\circ} = -164.10 \text{ kJ}$

a) Calculate the mass of N₂ produced if 10 kJ of heat is released.

b) Determine the enthalpy change when 2.2 g N₂O reacted.

SUMMARY

- Enthalpy change = enthalpy products enthalpy reactants
- Standard conditions: 25°C and 1 atm
- Characteristics:

a) flip the equation, change the sign of ΔH b) multiply the equation and ΔH with the same factor

8.1 Concept of enthalpy

Objectives:

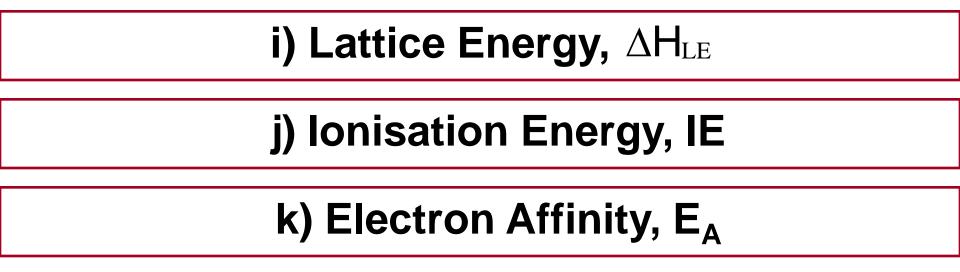
- Define the enthalpies of formation, combustion, sublimation, neutralisation, hydration, solution, atomisation, electron affinity, ionisation energy and lattice energy.
- Specify and explain the factors that influence the value of lattice energy and hydration energy.

ENTHALPY

a) Standard Enthalpy of Formation, ΔH_{f}°

b) Standard Enthalpy of Combustion, ΔH°_{c}

c) Standard Enthalpy of Neutralisation, ΔH_n°


d) Standard Enthalpy of Atomisation of an Element, ΔH_a°

e) Standard Enthalpy of Atomisation of a Compound, ΔH_{a}^{o}

f) Standard Enthalpy of Solution, ΔH_{soln}°

g) Standard enthalpy of Hydration, ΔH_{hyd}^{o}

h) Standard Enthalpy of Sublimation, ΔH_{subl}°

a) Standard Enthalpy of Formation, ΔH_f°

Elements in most stable form at standard states
metals: monatomic solid, Na(s), Mg(s)... exception Hg(*l*)

Diatomic elements: Hydrogen, oxygen, and nitrogen are H₂(g); O₂(g); N₂(g); F₂(g); Cl₂(g); Br₂(l); I₂(s)

Allotropes: C(graphite); P₄(white); S(rhombic)

- More negative ΔH_f° , more stable the compound
- The standard enthalpy of formation of any element in its most stable form is **zero**. Why???

 $\Delta H_{f}^{\circ}(O_{2}) = 0 \qquad \Delta H_{f}^{\circ}(C, \text{ graphite}) = 0$ $\Delta H_{f}^{\circ}(O_{3}) = +142 \text{ kJ/mol} \qquad \Delta H_{f}^{\circ}(C, \text{ diamond}) = +1.92 \text{ kJ/mol}$