8.3 HESS'S LAW

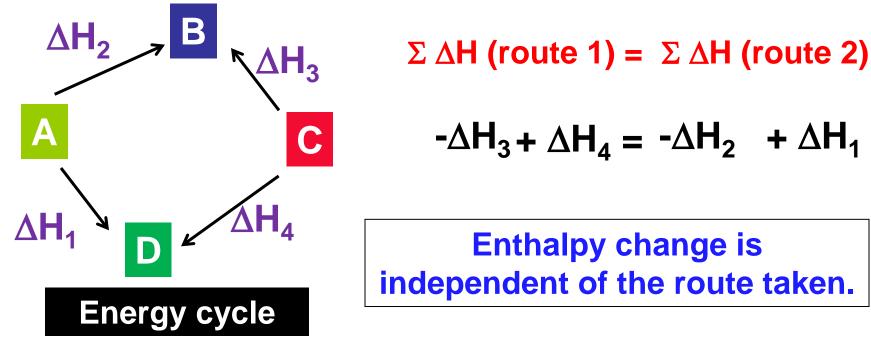
1

8.3 HESS'S LAW

Objectives:

- Define and apply Hess's Law.
- Draw or Construct the enthalpy diagram of a reaction.
- Calculate the reaction enthalpy by using
 - a) algebraic method
 - b) energy cycle method
 - c) formula

Calculation


- There are generally three common ways of determining the enthalpy of a chemical reaction:
 - Enthalpy diagram (Energy cycle method)
 - Algebraic method
 - Formula

Points to Remember

- Write the balanced thermochemical equations
 - Bear in mind the characteristics of the thermochemical equation.
 - Apply Hess's law

HESS'S LAW

"the overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reaction".

Hess's law is used to calculate any unknown enthalpy which is involved in one of these steps

FORMULA METHOD

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $\Delta H^0 = ?$ Given:

Compound	NH ₃	NO	H ₂ O
ΔH ⁰ _f (kJ mol ⁻¹)	-46	-242	+90

ALGEBRAIC METHOD

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ $\Delta H^0 = ?$ Given:

Compound	NH ₃	NO	H ₂ O
ΔH ⁰ _f (kJ mol ⁻¹)	-46	-242	+90

Solution:

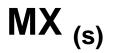
$$\begin{split} & \frac{1}{2}N_{2\ (g)} \ + \ 3/2H_{2\ (g)} \ \rightarrow \ NH_{3\ (g)} \\ & \frac{1}{2}N_{2\ (g)} \ + \ \frac{1}{2}O_{2\ (g)} \ \rightarrow \ NO\ _{(g)} \\ & H_{2\ (g)} \ + \ \frac{1}{2}O_{2\ (g)} \ \rightarrow \ H_{2}O\ _{(g)} \end{split}$$

- $\Delta H = -46 \text{ kJ mol}^{-1}$ (1)
- $\Delta H = -242 \text{ kJ mol}^{-1}$ (2)
- $\Delta H = +90 \text{ kJ mol}^{-1}$ (3)

CYCLE METHOD

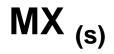
Hydration Process of Ionic Crystal

- Na⁺ and Cl⁻ ions in the solid crystal are separated from each other and converted to the gaseous state $(\Delta H_{lattice})$.
- The electrostatic forces between gaseous ions and **polar** water molecules cause the ions to be surrounded by water molecules (ΔH_{hydr}).



Na⁺ and Cl⁻ ion in the solid state

Hydrated Na⁺ and Cl⁻ ion


Enthalpy of the solution of the ionic crystal

$$M^{+}_{(g)} + X^{-}_{(g)}$$

Enthalpy of the solution of the ionic crystal

$$M^{+}_{(q)} + X^{-}_{(g)}$$

Calculate the hydration energy of pottasium iodide (KI). Its enthalpy of solution is +21 kJ mol⁻¹, and its lattice energy is -642 kJ mol⁻¹.

Energy Cycle Method

Check Point

1) The standard enthalpy for naphthalene, $C_{10}H_8(s)$ is $C_{10}H_8(s) + 12O_2(g) \longrightarrow 10CO_2(g) + 4H_2O(I)$ $\Delta H^0 = -5156.8 \text{ kJ/mol}$

Calculate the standard enthalpy of formation of $C_{10}H_8(s)$ Given,

 $\Delta H^{o}_{f}(H_{2}O,I) = -285.9 \text{ kJ/mol}$ $\Delta H^{o}_{f}(CO_{2},g) = -393.5 \text{ kJ/mol}$ $\Delta H^{o}_{f}(C_{10}H_{8},s) = ???$

<+78.2 kJ/mol>

Check Point

2) Use Hess's law to determine ΔH for the reaction $C_3H_4(g) + 2H_2(g) \rightarrow C_3H_8(g)$ Given that $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I)$ $\Delta H = -285.8 \text{ kJ}$ $C_3H_4(g) + 4O_2(g) \rightarrow 3CO_2(g) + 2H_2O(I)$ $\Delta H = -1937 \text{ kJ}$ $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$ $\Delta H = -2219.1 \text{ kJ}$

<-289.5 kJ>

- Hess's law: $\Sigma \Delta H$ (route 1) = $\Sigma \Delta H$ (route 2)
- Calculation: Algebraic & Hess Cycle methods or formula