CHAPTER 9: ELECTROCHEMISTRY 9.1 Galvanic Cell **9.2 Nernst Equation** 9.3 Electrolitic Cell

Electrochemistry

Is the study of the relationship between and _____

Electrochemical processes involved are :

One type of reaction cannot occur without the other.

Electrochemical Cells

Definition

Spontaneous reaction	A reaction that has a natural tendency to occur and does not require an energy input for it to occur. Example: Galvanic cell & rusting of iron
Non- spontaneous reaction	A reaction that cannot happen naturally and needs an energy input to help it to occur. Example: Photosynthesis & electrolytic cell

CHAPTER 9: ELECTROCHEMISTRY 9.1 Galvanic Cell

Electrochemistry

At the end of this topic, students should be able to:

- a) Define: oxidation, reduction & redox reaction
- b) Explain electrode potential for a metal immersed in a corresponding metal ions solution
- c) Sketch and describe the components and operation of a voltaic/galvanic cell
- d) Write half-cell equations and the overall cell reaction equation

REDOX Reaction

Reaction involving both oxidation & reduction occur at the same time

REDUCTION

 _____ of electron

🔸 Oxidation no. ___

Reaction at _____

Example:

OXIDATION

- \bullet _____ of electron
- 🔸 Oxidation no. ___
- Reaction at _____

Example:

Electrode	Conductor (carbon rod or metal) that allows electrons to pass through it.	
Anode	Electrode at which	occurs.
Cathode	Electrode at which	occurs.

EXAMPLE:

$$Cu_{(s)} + 2 \operatorname{Ag^{+}}_{(aq)} \rightarrow Cu^{2+}_{(aq)} + 2 \operatorname{Ag}_{(s)}$$

The ______ is reduced, and the ______ is oxidised.

Oxidising agent (oxidant): species that undergoes reduction or gains electrons.

Reducing agent (reductant): species that undergoes oxidation or donates electrons.

VIL x s o i s d e a t i o n

Galvanic / Voltaic Cell

Cations (K⁺) migrate to the cathode; anions (NO₃) move to the anode

Half Cell Equations & Overall Reaction

anode : (oxidation)

cathode : (reduction)

Overall cell reaction :

Half-cell reactions

Zn electrode vs Cu electrode

What happens at the zinc electrode ?

What happens at the zinc electrode ?

What happens at the zinc electrode ?

- Zinc is ______ than copper.
- Tendency to release electrons: Zn > Cu.

$$Zn_{(s)} \rightarrow Zn^{2+}_{(aq)} + 2e^{-}$$

- Zinc electrode dissolves.
- Oxidation occurs at the Zn electrode.
- Zn^{2+} ions enter $ZnSO_4$ solution.
- Zn is the _____ electrode since it is a source of electrons => _____.

What happens at the copper electrode ?

- The electron from the Zn metal moves out through the wire enter the Cu metal
- Cu²⁺ ions from the solution accept electrons.

$Cu^{2+}{}_{(aq)}$ + $2e^{-} \rightarrow Cu{}_{(s)}$

- Copper electrode is deposited.
- Reduction occurs at the Cu electrode.
- Cu is the _____ electrode => ____

Salt Bridge

 U tube containing an inert electrolyte.

₄ Example: _____ , _____ ,

.

Suspended in a gel.

or

Not react with the electrode nor with the ions in the cell.

Salt Bridge

b)

Cathode Anode voltmeter (+) (-) Salt bridge Cu Zn **50**, **Zn**²⁺ Cu²⁺

Example: Saturated K₂SO₄

Functions:

- a) to _____ the electrical circuit by permitting the ions to flow through it.
 - to maintain _____ in electrolytes.
- c) to ______ physically the anode compartment and the cathode compartment so that no metallic element will be deposited on the anode

How does the cell maintains its electrical NEUTRALITY?

<u>Left Cell</u>

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

Zn²⁺ ions enter the solution. Causing a net excess of tve charge.

<u>Right Cell</u>

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Cu²⁺ ions leave the solution. Causing an overall excess of -ve charge.

Electrical neutrality is maintained

This excess charge build-up can be reduced by adding a salt bridge

Writing the Cell Notation /Cell Diagram

Electrode (s) | Electrolyte | | Electrolyte | Electrode (s)

Writing the Cell Notation

Overall cell
$$Cu^{2+}_{(aq)} + Zn_{(s)} \rightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$$

Note: Ion with lower oxidation no. are written next to electrode

Electron is flowing from anode to cathode...

REMEMBER "2R" – Right for Reduction & "RED CAT" – REDuction at CAThode

EXAMPLE 1:

Cell notation:

Cell notation:

Note: Pt is used as the electrode if the element does not exist as solid at $25^{\circ}C(Cl_2, O_2)$ or is a non-conductor (I_2) .

EXAMPLE 3:

Cell notation:

Note: For galvanic cells involving gases, an additional vertical line is present and written next to the electrode

Keep in Mind !

- Phases of the reactants and products must be indicated.
 Concentration of ion or pressure of gas must be specified if it is known.
- 2) / -- represents phase boundary within a half-cell Use comma between two species of the same phase.
- 3) // -- designates the salt bridge connecting two half-cells
- 4) OIL : Oxidation is on the Left

REG : *Red* uction is on the *R* ight

5) *Solid conductors* (metal rods) must be at both ends of a cell notation

Exercise :

For the cell below, write the anode and cathode reaction and also net cell reaction.

1. Al _(s) | Al³⁺_(aq) || Sn⁴⁺ _(aq), Sn²⁺ (aq) | C (s)

2. Pt $_{(s)}$ | Cu⁺ $_{(aq)}$, Cu²⁺ $_{(aq)}$ || Ag⁺ $_{(aq)}$ | Ag $_{(s)}$

Solution:

Exercise :

Write the cell notation for the galvanic cell below:

a)
$$2Fe^{3+}_{(aq)} + 2I^{-}_{(aq)} \rightarrow I_{2(aq)} + 2Fe^{2+}_{(aq)}$$

b) $Mg_{(s)} + Sn^{2+}_{(aq)} \rightarrow Mg^{2+}_{(aq)} + Sn_{(s)}$

EXERCISE :

Write the cell notation for a voltaic cell that consists of a copper electrode immersed in 1.0 M Cu(NO₃) solution and a silver electrode immersed in 1.0 M AgNO₃ solution. The copper electrode is the anode.

SUMMARY

- Galvanic cell: chemical $E \rightarrow$ electrical E
- Electrolytic cell: electrical $E \rightarrow$ chemical E
- Flip equation, change the sige of E°
- Multiply the equation, no change in E°
- Cell notation: anode // cathode

Electrochemistry

At the end of this topic, students should be able to:

- a) Define: oxidation, reduction & redox reaction
- b) Explain electrode potential for a metal immersed in a corresponding metal ions solution
- c) Sketch and describe the components and operation of a voltaic/galvanic cell
- d) Write half-cell equations and the overall cell reaction equation
- e) Write cell notation for a Galvanic cell

Electrode Potential

A Zn plate immersed in its ions solution

- Zn metal loses e, Zn²⁺ gains electrons
- Equilibrium between
 Zn and Zn²⁺

The electrical potential difference produced between the electrode and the solution in a half cell is called electrode potential of the metal.

cannot be measured

Electrode Potential

The electrode potential is also known as **reduction potential**.

The half cell is connected to a standard hydrogen electrode (SHE) which is used as a standard or reference electrode to measure the electrode potential of any half cell.

The standard conditions for the measurements:

- a. The concentrations of aqueous ions are 1.0 M
- b. All gas pressures are fixed at 1 atm
- c. The temperature is 25°C (289K)

Standard Hydrogen Electrode, SHE

SHE consists of H₂ (g, 1 atm), bubbling around a platinum electrode which is immersed in 1.0 M solution of H⁺ solution at 25°C.

E° = ???

The standard reduction of SHE is 0.00 V

• The half cell equation:

 $2H^{+}_{(aq)}(1M) + 2e \implies H_{2(g, 1 \text{ atm})} \qquad E^{\circ} = 0$

- The direction of half-reaction of SHE depends on the other half-cell connected on it.
- The cell notation for SHE is either:

In either case, E⁰ of SHE remains 0.00 V

Standard electrode (reduction) potential (SRP) of element M: -

 The potential difference produced when a half-cell of an element M – ions Mⁿ⁺ (electrode) is connected to a hydrogen half-cell at standard-state conditions

Cells Operating under Standard-State Conditions

 $| H^+_{(aq)} | H_2_{(g)} | Pt_{(s)}$

Pt $_{(s)}$ | H_{2 (g)} | H⁺ $_{(aq)}$ | |

Standard Reduction Potential

REDUCTION HALF-REACTION	E° (Volt)
Na⁺ + e⁻ ≑ Na	-2.71
Mg²+ + 2 e⁻ ≑ Mg	-2.37
Al ³⁺ + 3 e⁻ ≑ Al	-1.66
Zn²+ + 2 e⁻ ≑ Zn	-0.76
Fe²+ + 2 e⁻ ≑ Fe	-0.44
Sn²+ + 2 e⁻ ≑ Sn	-0.14
Pb²+ + 2 e⁻ ≑ Pb	-0.13
2 H⁺ + 2 e⁻ ≑ H ₂	+0.00
Sn ⁴⁺ + 2 e⁻ ≑ Sn ²⁺	+0.15
Cu²+ + 2 e⁻ ≑ Cu	+0.34
Ag⁺ + e⁻ ≑ Ag	+0.80

****** All written in reduction form.

E^o = Standard Electrode Potential = Standard Reduction Potential

E° = **+ve**

⇒ Forward reaction predominates

E°cell

At standard state conditions:

- Temperature: 25°C
- Pressure of gas: 1.0 atm
- Solute concentration: 1.0 M

E°_{cell} = cell potential / cell voltage / cell emf (electromotive force)

Example 1:

Standard reduction potential of zinc half cell is measured by setting up the electrochemical cell as below.

Anode : Cathode :

 $Zn(s) | Zn^{2+}(1M) | | H^{+}(1M) | H_{2}(1atm) | Pt(s)$

Anode: $Zn(s) \rightarrow Zn^{2+}(1M) + 2e^{-1}$ Cathode: $2H^{+}(aq, 1M) + 2e^{-1} \rightarrow H_{2}(g, 1atm)$

Cell reaction:

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$
$$E^{o}_{cell} = E^{o}_{H^{+}/H_{2}} - E^{o}_{Zn^{2+}/Zn}$$

 \therefore Standard reduction potential: $Zn^{2+} + 2e^{-} \rightarrow Zn$ $E^{0} = -0.76 V$

Example 2:

Standard reduction potential of copper half cell is measured by setting up the electrochemical cell as below.

Anode: Cathode:

Pt (s) | H₂ (1 *atm*) | H⁺ (1 *M*) | | Cu²⁺ (1 *M*) | Cu (s)

Anode: $H_2(1 atm) \rightarrow 2H^+ + 2e^-$ Cathode: $Cu^{2+}(1 M) + 2e^- \rightarrow Cu(s)$

Cell reaction:

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$
$$E^{o}_{cell} = E^{o}_{Cu}^{2+}/Cu - E^{o}_{H}^{+}/H_{2}$$

 \therefore Standard reduction potential: $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{0} = -0.76 V$

NOTE 1:

• The sign of E° changes when the reaction is reversed.

 $Mg^{2+}_{(aq)} + 2e^{-} \rightarrow Mg_{(s)} \quad E^{o} = -2.37 V$

$$F_{2(g)} + 2e^{-} \rightarrow 2 F^{-}_{(aq)} = +2.87 V$$

NOTE 2:

 Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E^o

 $AI^{3+}_{(aq)} + 3e^{-} \rightleftharpoons AI_{(s)} \qquad E^{o} = -1.68 V$

Example 3:

 $Cl_{2(g)} + 2e^{-} \rightarrow 2Cl^{-}_{(aq)} = \pm 1.36 \text{ V}$ $\frac{1}{2}Cl_{2(g)} + e^{-} \rightarrow Cl^{-}_{(aq)}$ $2Cl_{2(g)} + 4e^{-} \rightarrow 4Cl^{-}_{(aq)}$ $2Cl^{-}_{(aq)} \rightarrow Cl_{2(q)} + 2e^{-}$

NOTE 3:

Indications of the sign of E°.

Oxidant + $ne^- \Rightarrow$ Reductant $Cl_{2(g)} + 2e^- \Rightarrow$ $2Cl^-_{(aq)}$ $E^o = +1.36$ V $Br_{2(l)} + 2e^- \Rightarrow$ $2Br^-_{(aq)}$ $E^o = +1.07$ V

+ve $E^{\circ} \Rightarrow$ favours the **forward** reaction

- \Rightarrow Cl₂ tends to accept e; more electronegative
- \Rightarrow Cl₂ is easier to be reduced; stronger oxidising agent
- \Rightarrow CI⁻ is difficult to be oxidised; more stable

The strength of oxidising agents: The strength of reducing agents:

Example 4:

 $Ni^{2+}_{(aq)} + 2e^{-} \rightarrow Ni_{(s)}$ $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$ $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$

E^o = -0.25 V E^o = +0.34 V E^o = +0.80 V

Oxidation agent \rightarrow left of the half cell equation Reduction agent \rightarrow right of the half cell equation

The more -ve the value of $E^0 \rightarrow$

The more +ve the value of $E^0 \rightarrow$

NOTE 4:

REDUCTION HALF-REACTION	E° (Volt)
Na⁺ + e⁻ ≑ Na	-2.71
Mg²+ + 2 e⁻ ≑ Mg	-2.37
Al ³⁺ + 3 e⁻ ≑ Al	-1.66
Zn²+ + 2 e⁻ ≑ Zn	-0.76
Fe²+ + 2 e⁻ ≑ Fe	-0.44
Sn²+ + 2 e⁻ ≑ Sn	-0.14
Pb²+ + 2 e⁻ ≑ Pb	-0.13
2 H⁺ + 2 e⁻ ≑ H ₂	+0.00
Sn ⁴⁺ + 2 e⁻ ≑ Sn ²⁺	+0.15
Cu ²⁺ + 2 e ⁻ ≑ Cu	+0.34
Ag⁺ + e⁻ ≑ Ag	+0.80

The more positive the value of E°, the more likely the substance is reduced (cathode).

Likewise, the more negative the value, the more likely the substance is oxidised (anode).

Example 5:

 $Cu^{2+}{}_{(aq)} + 2e \rightarrow Cu{}_{(s)} \qquad E^{\circ}{}_{red} = +0.34 V$ $Zn^{2+}{}_{(aq)} + 2e \rightarrow Zn{}_{(s)} \qquad E^{\circ}{}_{red} = -0.76 V$

The more positive the half-cell's electrode potential, more easier to accept electrons.

Tendency for reduction \uparrow (cathode)

Standard reduction potential of Cu half-cell is more positive compared to zinc.

Copper half-cell becomes _____.

Zinc half-cell becomes _____.

EXERCISE 1:

Calculate the standard cell potential of the following electrochemical cell.

 $Co(s) | Co^{2+}(aq) || Ag^{+}(aq) | Ag(s)$

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(aq) = +0.80V$

$$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$$
 $E^{0} = -0.28V$

EXERCISE 2:

Arrange the 3 elements in order of increasing strength of reducing agents.

$$X^{3+}$$
 + $3e^{-} \rightarrow X$ E^{0} = -1.66 V
 Y^{2+} + $2e^{-} \rightarrow Y$ E^{0} = -2.87 V

$$L^{2+}$$
 + $2e^- \rightarrow L$ E^0 = +0.85 V

Uses of standard electrode potential (SRP)

- Determine the electron flow direction, anode and cathode
- Determine species being reduced (oxidant) and species being oxidised (reductant) – refer NOTE 3 & Example 4
- Build up the electrochemical series
- Calculate the cell potential (E°_{cell})
- Predict the stability of ions
- Predict the spontaneity of a reaction

Predicting spontaneity of redox reaction

E° cell +ve

•••••

The FORWARD rxn is spontaneous

 E° cell – ve

••••••

The FORWARD rxn is NON-spontaneous

But the REVERSE rxn is spontaneous

.....

The rxn is at **EQUILIBRIUM**

Example 6:

Predict whether the following reactions occur spontaneously or non-spontaneously.

$$Zn + Sn^{4+} \rightarrow Sn^{2+} + Zn^{2+}$$

[$E^{\circ}_{Sn}^{4+}_{/Sn}^{2+} = + 0.15V, E^{\circ}_{Zn/Zn}^{2+} = + 0.76V$]

Enhancement 1:

Predict : Spontaneous or non-spontaneous reaction? $Pb^{2+}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow Pb_{(s)} + Cl_{2(g)}$ $E^{\circ}_{Pb2+/Pb} = -0.13 V \qquad E^{\circ}_{Cl2/Cl-} = +1.36 V$

Enhancement 2:

A cell consists of silver and tin in a solution of 1 M silver ions and tin (II) ions. Determine the spontaneity of the reaction and calculate the cell voltage of this reaction. $[E_{Ag+/Ag}^{\circ} = + 0.80 V, E_{Sn/Sn2+}^{\circ} = + 0.14 V]$

Enhancement 3:

The cell diagram is Zn (s) / Zn²⁺ (1M) // Fe³⁺ (1M), Fe²⁺ (1M) / Pt (s)

- i) Label A to E in figure 1
- ii) State the direction of electrons flow in the external circuit
- iii) Write the half-cell equations and overall equation

Figure 1

Enhancement 4:

Aluminium will displace tin from solution according to the equation,

 $2 \text{ Al } (s) + 3 \text{ Sn}^{2+} (aq) \longrightarrow 2 \text{ Al}^{3+} (aq) + 3 \text{ Sn} (s)$

- i) If this was the cell reaction in a galvanic cell, what is the anode?
- ii) Write the individual half-cell reactions.
- iii) Write the cell notation.

Enhancement 5:

- (a) Define standard cell potential.
- (b) A voltaic cell is built from nickel and silver half-cells under standard conditions.

Ni²⁺ (aq) + 2e
$$\longrightarrow$$
 Ni(s) E^o = -0.23 V
Ag⁺(aq) + e \longrightarrow Ag(s) E^o = +0.80 V

- i) Write the cell notation.
- ii) Write the reactions of the half cells and the overall cell reaction.
- iii) Deduce the reducing agent in the voltaic cell.
- iv) Calculate the standard cell potential.

Enhancement 6:

Describe what would you expect to see happening to both electrode compartments after a period of time? Account for your answer. Enhancement 7:

Determine the anode and cathode from a given (a) Set of Standard Electrode (reduction) Potentials, *E*°

 $E^{\circ}_{Cd/Cd^{2+}} = + 0.46 \text{ V}$ $E^{\circ}_{Cr^{3+/Cr}} = - 0.74 \text{ V}$

(b) Cell diagram

(c) Overall cell equation