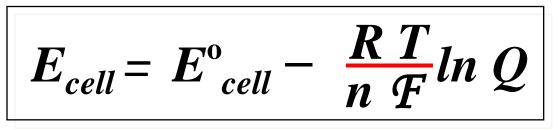
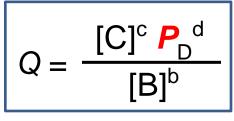
CHAPTER 9: ELECTROCHEMISTRY 9.2 Nernst Equation


1

9.2 Nernst Equation


At the end of this topic, students should be able to:

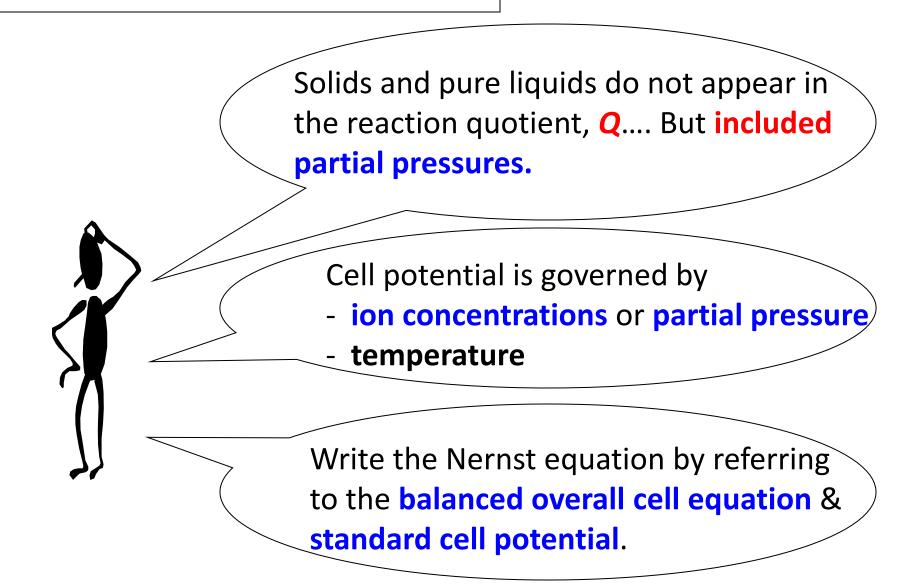
- Write and apply the Nernst equation to determine
 a) the cell potential, *E*_{cell} at non-standard state
 conditions
 - b) the ion concentration / partial pressure of a gas
 - c) pH solution
 - d) the equilibrium constant, K
- Discuss the effect of concentration and temperature on Ecell

Nernst Equation

- **E**_{cell}: Cell potential at specified concentration (of ions) and temperature.
- **E°**_{cell}: Standard Cell Potential.
 - *n* : No. of moles of electrons involved in the Redox reaction.
 - T: Temperature of cell (in Kelvin).
 - **R**: Universal gas constant (8.314 J mol⁻¹ K⁻¹).
 - F: Faraday constant (96500 C mol⁻¹).
 - Q: Mass action expression: aA(s) + bB(aq) → cC(aq) + dD(g)

Nernst Equation

$$E_{cell} = E^{o}_{cell} - \frac{RT}{nF} lnQ$$


Since *R* and *F* are constants, at 25° C,

$$\frac{R T}{F} = \frac{(8.314 \text{ J mol}^{-1} \text{ K}^{-1}) (298 \text{ K})}{(9.65 \text{ X} 10^4 \text{ C mol}^{-1})} = 0.0257$$

Therefore, Nernst equation can be symplified to...

At 25°C
$$E_{cell} = E_{cell}^{o} - \frac{0.0257}{n} \ln Q$$

At 25°C
$$E_{cell} = E_{cell}^{o} - \frac{0.0592}{n} \log Q$$

Points to remember

Example 7:

 $Cr_{(s)}/Cr^{3+}_{(aq)}//Br_{2(1)}/Br^{-}_{(aq)}/Pt_{(s)}$

Cell eqn:

** e transferred , _____

Nernst eqn:

Example 8:

 $Cu_{(s)}/Cu^{2+}_{(aq)}//Cl_{2(q)}/Cl_{(aq)}/Pt_{(s)}$

Cell eqn:

** e transferred , _____

Nernst eqn:

Nernst Equation... calculate E_{cell}

Example 8:

Calculate the e.m.f. of the following cell:

Zn(s) / Zn²⁺(1.8 M, aq) // Cu²⁺(0.2 M, aq) / Cu(s)

Solution:

Anode [O]: Cathode [R]:

Nernst Equation... determine pH

Example 9:

Calculate pH of a galvanic cell built from the hydrogen electrode and zinc plate in 1.0 M zinc nitrate.

 $[Zn^{2+}] = 1.0 \text{ M} P_{H_2} = 1 \text{ atm} E_{cell} = +0.58 \text{ V}$

Solution:

The cell reaction:

Nernst Equation... at equilibrium

- At equilibrium there is no net transfer of electrons,
- $E_{\text{cell}} = 0$
- *Q* becomes *K*_c (equilibrium constant)

$$E_{cell} = E_{cell}^{o} - \frac{0.0592}{n} \log Q$$
$$0 = E_{cell}^{0} - \frac{0.0592}{n} \log K_{c}$$

Nernst Equation... determine K

Example 10:

Calculate the K_c for the following reaction:

$$Sn^{2+}(aq) + 2Ag^{+}(aq) \implies Sn^{4+}(aq) + 2Ag(s)$$

Solution
Anode :

Cathode :

Nernst Equation.. Predict spontaneity

Example 11:

Will the following reaction occur spontaneously at 25°C if $[Fe^{2+}] = 0.60$ M and $[Cd^{2+}] = 0.010$ M? Fe²⁺(*aq*) + Cd(*s*) \longrightarrow Fe(*s*) + Cd²⁺(*aq*)

Solution:

Anode:

Cathode:

Points to Ponder

Question:

 $3Ni^{2+}(aq) + 2Cr(s) \rightarrow 3Ni(s) + 2Cr^{3+}(aq)$ $E_{cell} = +0.42 V$

What would you do so as to increase the value of E_{cell} ?

Solution:

Nernst Equation.. Predict spontaneity

 E°_{cell} or E_{cell} can be used to predict the spontaneity of a reaction between two species.

E° _{cell} / E _{cell}	Spontaneity of Reaction
+ve	Spontaneous
0	The system is at equilibrium
-ve	Non-spontaneous

Points to Remember

- 1) The value of E°_{cell} does **not** indicate the reaction rate.
- 2) A reaction may occur spontaneously if the conditions (e.g.: conc. or temp.) have changed even though its \mathcal{E}_{cell} is negative.
- 3) When $E_{cell} = 0$, there is **no** difference in electrical potential between two electrodes and thus **no electron flow**.
- 4) If the reaction is at **non-**standard state conditions, use Nernst equation to determine the value of E_{cell} and then predict the spontaneity of the reaction.

Check Point

1) Calculate E_{cell} for the following reaction : $Co^{2+}_{(aq)} + Fe_{(s)} \longrightarrow Co_{(s)} + Fe^{2+}_{(aq)}$ Given: $[Co^{2+}] = 0.15$ M & $[Fe^{2+}] = 0.68$ M <+0.14 V>

2) Calculate the equilibrium constant for the reaction between Mg and aqueous solution of $ZnSO_4$ at 25°C and standard conditions. <2.47×10⁵⁴>

Check Point

3) Electrode AI was placed in AI(NO₃)₃ 1.0 M and electrode Pb in Pb(NO₃)₂ 1.0 M.

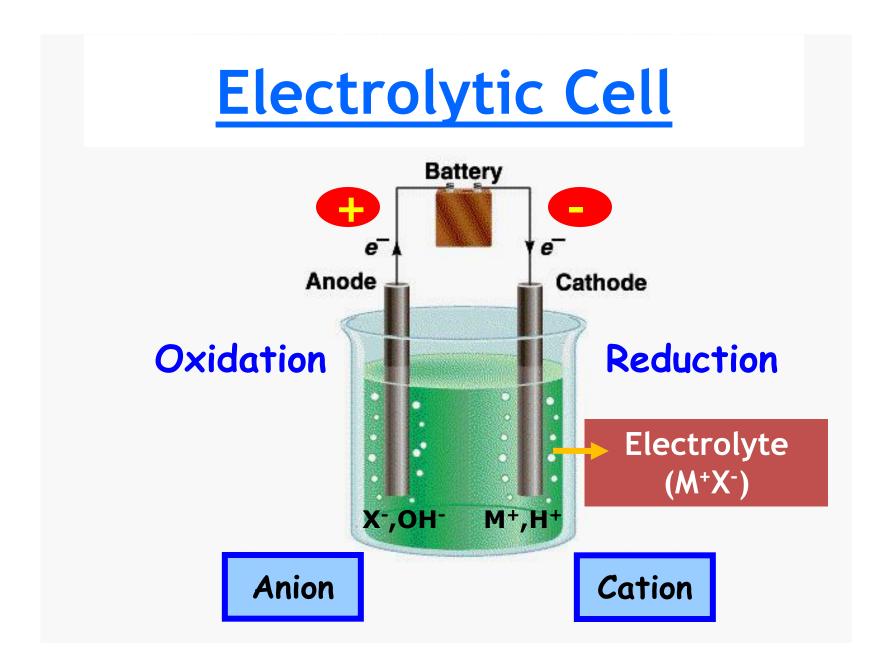
Given
$$E^{0}_{Al^{3+/Al}} = -1.66 V$$

 $E^{0}_{Pb^{2+/Pb}} = -0.13 V$

- a) Write the equations for the reactions at the cathode and anode.
- b) Draw the cell diagram for the reaction
- c) Calculate *E*°_{cell}
- d) Calculate E_{cell} if $[AI(NO_3)_3]$ is diluted to 0.005 M

Check Point

- 4) A galvanic cell is made up of Zn electrode immersed in ZnSO₄ solution and standard hydrogen electrode.
 - a) Given $[Zn^{2+}] = 1.0 \text{ M}$, $P_{H_2} = 1 \text{ atm}$ and $E_{cell} = +0.45 \text{ V}$ at 25°C, calculate [H⁺].
 - b) If $E_{cell} = +0.542 \text{ V} \& [Zn^{2+}] = 0.10 \text{ M}$, calculate pH of the solution.


ELECTROLYSIS

Electrolysis is a chemical process that <u>uses electricity</u> for a non-spontaneous redox reaction to occur. Such reactions take place in <u>electrolytic cells</u>.

Electrolytic Cell

 It is made up of <u>2 electrodes immersed in an</u> <u>electrolyte</u>.

- A <u>direct current</u> is passed through the electrolyte from an external source.
- Molten salt and aqueous ionic solution are commonly used as electrolytes.

🗹 Positive electrode

✓ The electrode which is connected to the positive terminal of the battery

Oxidation takes place

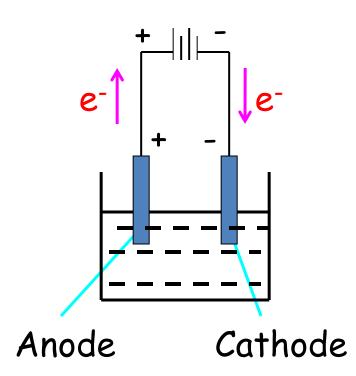
Electrons flow from anode to cathode

🗹 Negative electrode

- ✓ The electrode which is connected to the <u>negative terminal</u> of the battery
- Reduction takes place

Electrode

- 🗵 as circuit connectors
- as sites for the precipitation of insoluble products
- 🗵 example: Platinum , Graphite (<u>inert</u> electrode)


Electrolyte


 a liquid that conducts electricity due to the presence of positive and negative ions
 type of electrolyte:
 <u>molten state</u> or
 <u>in aqueous solution</u>
 so that the ions can move freely

Comparison between a galvanic cell and an electrolytic cell

Electrolytic Cell

Galvanic Cell

Electrolytic Cell

- Cathode = negative
- Anode = positive
- Non-spontaneous redox reaction requires energy to drive it

Galvanic Cell

- Cathode = positive
- Anode = negative

Spontaneous redox
reaction releases energy

Similarities:

Oxidation occurs at anode, reduction occurs at cathode

Anions move towards anode, cations move towards cathode.

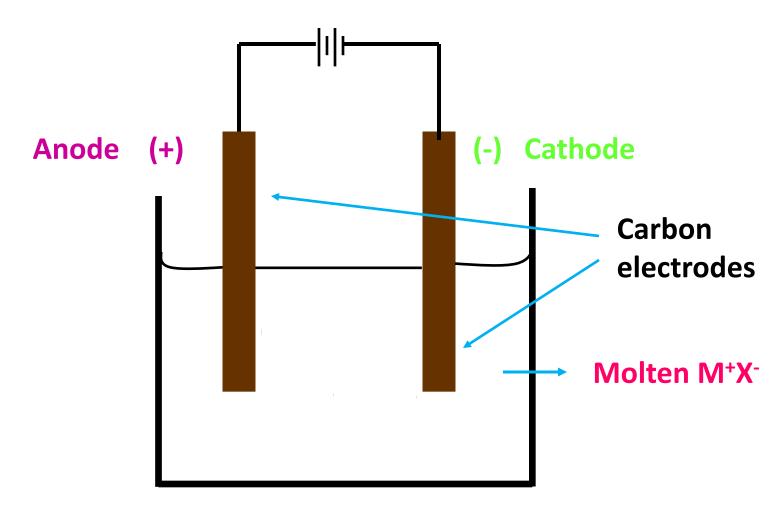
Electrons flow from anode to cathode in an external circuit.

Objectives:

At the end of the lesson, the students should be able to:

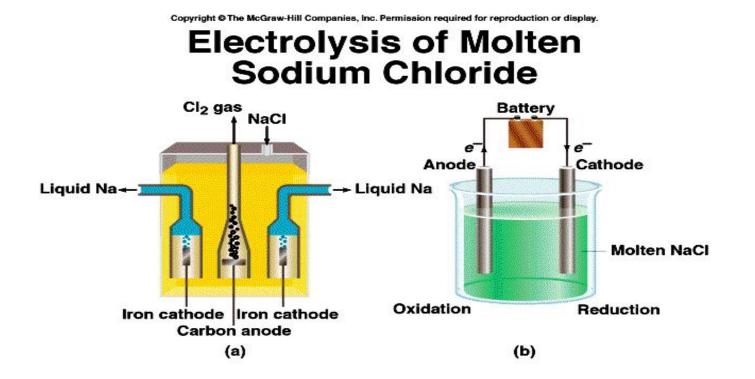
- c) Decribe the influence of the factors on the selective discharge of a species at the electrode
 - Standard reduction/electrode potential of the species
 - Concentration of the species
 - Nature of electrode
- d) Explain the electrolysis of the following electrolytes using inert electrode
 - molten salt
 - concentration and dilute aqueous NaCl
 - aqueous Na_2SO_4

e) Predict the product of electrolysis using examples


Predicting The Products of Electrolysis

Factors influencing the products :

- 1. Standard reduction/electrode potential of the species
- 2. Concentrations of the species
- 3. Nature of electrodes used (inert)


1. Electrolysis of molten salt

Requires high temperature
Example: Electrolysis of molten NaCl

Example: Electrolysis of Molten NaCl				
$NaCl_{(S)} \longrightarrow Na^+_{(I)} + Cl^{(I)}$				
Cathode (-)	Anode (+)			
lons present: Na ⁺	lons present: Cl ⁻			
$Na^+_{(\prime)} + e \rightarrow Na_{(s)}$	$2Cl_{(l)}^{-} \rightarrow Cl_{2(g)} + 2e$			
- Reduction process	- Oxidation process			
- The sodium metal forms	- Chlorine gas evolved			

Electrolysis of molten NaCl is industrially important. The industrial cell is called 'Downs Cell'

2. Electrolysis of Aqueous Salt

Aqueous salt solutions contains <u>anion</u>, <u>cation</u> and <u>water</u>.
 Water is an <u>electro-active substance</u> that may be oxidised or reduced in the process depending on the <u>condition of electrolysis</u>.

Electrolysis of aqueous salt is more complex.

Reduction :

Oxidation :

Example: Electrolysis of Aqueous NaCl

NaCl aqueous solution contains Na⁺ cation, Cl⁻ anion and water molecules

On electrolysis,

 \checkmark the cathode attracts Na⁺ ion and H₂O molecules

 \checkmark the anode attracts Cl⁻ ion and H₂O molecules

The electrolysis of aqueous NaCl depends on the <u>concentration of electrolyte.</u>

3. Electrolysis of Concentrated NaCl solution Cathode:

Na⁺ (aq) + $e^- \rightarrow Na$ (s) $E^0 = -2.71 V$

 $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq) = -0.83 V$

E⁰ for water molecules is <u>more positive</u>.
 H₂O easier to be reduce.

Anode:

 $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ $E^0 = +1.36 V$

 $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$ $E^0 = +1.23 V$

 In concentrated solution, chloride ions will be oxidised because of its high concentration.

Reactions involved:

Cathode:

Anode:

Cell reaction: 4. Electrolysis of diluted NaCl solution Cathode:

Na⁺ (aq) + $e^{-} \rightarrow$ Na (s) $E^{0} = -2.71 V$

 $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ $E^0 = -0.83 V$

✓ E⁰ for water molecules is <u>more positive</u>.
 ✓ H₂O easier to reduce.

Anode:

 $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$ $E^0 = +1.36 V$

 $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$ $E^0 = +1.23 V$

 In dilute solution, water will be selected for oxidation because E° water is less positive (lower E°).

Reactions involved:

Cathode:

Anode:

Cell reaction:

Exercise:

Predict the electrolysis reaction when Na_2SO_4 solution is electrolysed using platinum electrodes.

Solution:

Na₂SO₄ aqueous solution contains Na⁺ ion, SO₄²⁻ ion and water molecules
 On electrolysis,

 \checkmark Cathode: attracts Na⁺ ion and H₂O molecules

✓ Anode: attracts SO_4^{2-} ion and H_2O molecules

Cathode:

Na⁺ (aq) + e⁻ → Na (s) $E^{0} = -2.71 \text{ V}$ 2H₂O (l) + 2e⁻ → H₂ (g) + 2OH⁻ (aq) $E^{0} = -0.83 \text{ V}$

E⁰ for water molecules is <u>more positive</u>
 H₂O easier to reduce

Anode :

$$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq) = +2.01 V$$

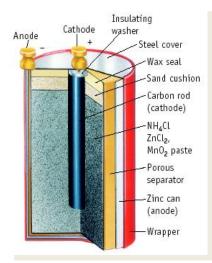
 $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$ $E^0 = +1.23 V$

E⁰ for water molecules is <u>less positive</u>
 H₂O easier to oxidise

React	ions ⁱ	invo	ved:

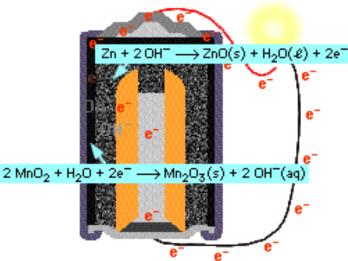
Cathode:

Anode:

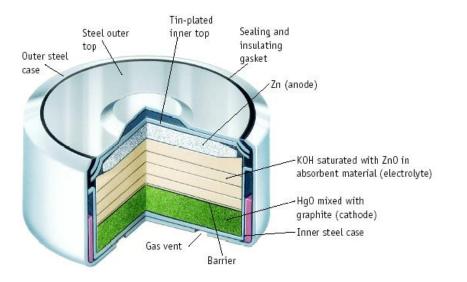

Cell Reaction :

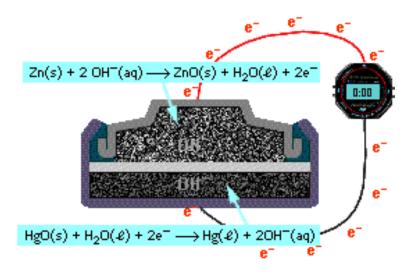
Cathode =

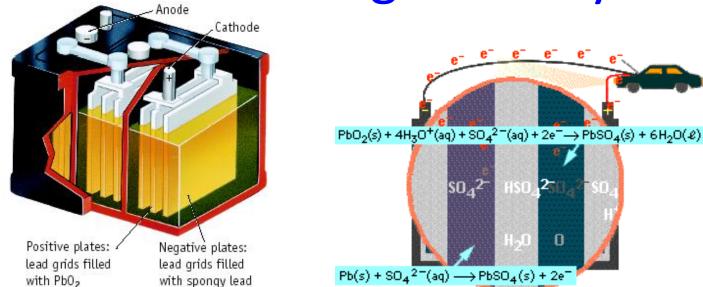
♦ Anode =


Product of electrolysis

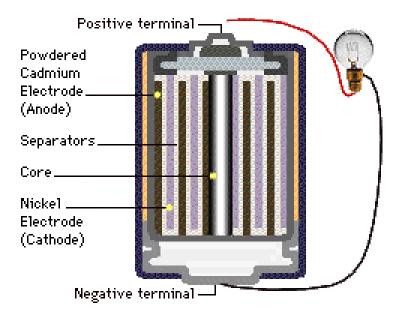
Dry Cell Battery


Alkaline Battery




Nearly same reactions as in common dry cell, but under basic conditions.

Mercury Battery



Lead Storage Battery

Ni-Cad Battery

