CHAPTER 8: THERMOCHEMISTRY

Concept of Enthalpy

1 Hydrogen gas burns in air to form water:

 $2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \quad \Delta H = -572 \text{ kJ}$

How much heat energy is given off if 10.0 kg of hydrogen gas is burnt in excess oxygen?

2 Ammonium nitrate ,NH₄NO₃ decomposes by the following reaction:

 $2 \text{ NH}_4 \text{NO}_3(g) \rightarrow 2 \text{ N}_2 \text{O}(g) + 4 \text{ H}_2 \text{O}(g) \qquad \Delta \text{H}^\circ = -74.8 \text{ kJ}$

If 74.0 g of H₂O are formed from the reaction, how much heat was released?

Calorimetry

1 When 18.70 g sodium chloride was dissolved in 400 cm³ distilled water, the temperature of the solution decreased by 1.0 °C.

[Specific heat capacity of solution = $4.20 \text{ Jg}^{-1} \text{ }^{\circ}\text{K}^{-1}$, density of solution = 1.0 g cm^{-3}]

- a) Calculate the heat of solution of sodium chloride.
- b) Determine the enthalpy of solution of sodium chloride.
- 2 A sample of 0.02 mol octane, C_8H_{18} (*l*) was burnt in a bomb calorimeter, the temperature of 1000 cm³ water increased by 24.2 °C.

[Specific heat capacity of solution = $4.20 \text{ Jg}^{-1} \text{ C}^{-1}$, density of solution = 1.0 g cm^{-3}]

- a) What is the enthalpy of combustion of octane?
- b) Write the thermochemical equation for the combustion of octane.
- 3 When 1.00 g of calcium chloride, $CaCl_2$, is added to 60.0 g of water in a coffee cup calorimeter, it dissolves:

 $\operatorname{CaCl}_2(s) \rightarrow \operatorname{Ca}^{2+}(aq) + 2\operatorname{Cl}^{-}(aq)$

The temperature rises from 20.00° C to 23.51° C. Assuming that all the heat given off by the reaction is transferred to the water, calculate the heat for the reaction.

- 4 An amount of 120.0 mL of coffee in a well-insulated cup at 82.0 °C is too hot to drink. What volume of cold fresh milk at 15.0 °C need to be added to the coffee in order to achieve a temperature of 65.0 °C? Assume specific heat capacities and densities of coffee and milk are the same as water.
- 5 100.00 cm^3 of 2.0 mol dm⁻³ hydrochloric acid was added to excess 100.00 cm³ of 3.0 mol dm⁻³ potassium hydroxide solution. Both solutions are at initial temperature of 30.0 °C are mixed in a calorimeter. The maximum temperature of the solution is 41.0 °C. [Specific heat capacity of solution = $4.20 Jg^{-1} °C^{-1}$]
 - a) Determine the limiting reagent.
 - b) Calculate the enthalpy of neutralization for the reaction.
 - c) Write the thermochemical equation between hydrochloric acid and potassium hydroxide solution.

SPONGE BOB: MAINTAIN EXCELLENT BUT NOT OVER CONFIDENT

6 150 cm³ of potassium hydroxide solution of concentration 2.0 M and 250 cm³ of 1.5 M hydroiodic acid were mixed in a calorimeter. If the temperature rise is 10.2 °C, calculate heat evolved from the reaction.

KOH (aq) + HI $(aq) \rightarrow$ KI (aq) + H₂O (aq)[Specific heat capacity solution = 4.2 $Jg^{-1o}C^{-1}$; density of solution = 1.0 g cm⁻³]

- 7 The enthalpy of combustion of benzoic acid is -3226.8 kJ mol⁻¹. When 3.2 g benzoic acid, C₆H₅COOH is completely combusted in a bomb calorimeter containing 2.0 kg of water, the temperature of the water increased by 3.8 °C.
 - a) Write the thermochemical equation for the combustion of benzoic acid.
 - b) Calculate the heat capacity of the calorimeter.
- 8 3.00 g of carbon was burned in a bomb calorimeter containing 2000 g of water at an initial temperature 20 °C. The maximum temperature recorded was 31.3 °C and the enthalpy of combustion of carbon is 402 kJ/mol. Calculate the heat capacity of bomb calorimeter. The specific heat for water is 4.184 J/g°C.

Hess's Law

- 1 Standard enthalpy of formation of $CO_2(g)$, $H_2O(l)$ and $C_5H_{12}(g)$ are 394 kJ mol⁻¹, – 286 kJ mol⁻¹ and – 173 kJ mol⁻¹ respectively. Determine the heat of combustion of pentane, C_5H_{12} using standard enthalpies of formation given.
- 2 Calculate the heat of combustion of methane using standard heats of formation below:

$\Delta H_f \operatorname{CO}_2(g)$	$= -394 \text{ kJ mol}^{-1}$
$\Delta H_f H_2 O(l)$	$= -286 \text{ kJ mol}^{-1}$
$\Delta H_f CH_4(g)$	$= -75 \text{ kJ mol}^{-1}$

3 Determine the enthalpy of formation of hydrogen peroxide (H_2O_2) by using the data below.

	ΔH° (kJ/mol)
$\mathrm{H}_{2}\left(g\right) \ + \ \frac{1}{2} \mathrm{O}_{2}\left(g\right) \ \rightarrow \ \mathrm{H}_{2} \mathrm{O}\left(g\right)$	- 241.82
$2 \operatorname{H}(g) + \operatorname{O}(g) \rightarrow \operatorname{H}_2\operatorname{O}(g)$	- 926.92
$2 \operatorname{H}(g) + 2 \operatorname{O}(g) \rightarrow \operatorname{H}_2\operatorname{O}_2(g)$	- 1070.62
$2 \operatorname{O}(g) \rightarrow \operatorname{O}_2(g)$	- 498.34
$H_2O_2(l) \rightarrow H_2O_2(g)$	+ 51.46

4 Draw the Born-Haber cycle for the formation of magnesium chloride, MgCl₂ from magnesium metal and chlorine gas. Calculate the enthalpy of formation of MgCl₂. Given:

Heat of sublimation of magnesium, $\Delta H_1 = +149 \text{ kJ mol}^{-1}$ First ionization energy of magnesium, $\Delta H_2 = +740 \text{ kJ mol}^{-1}$ Second ionization energy of magnesium, $\Delta H_3 = +1456 \text{ kJ mol}^{-1}$ Heat of atomization of chlorine, $\Delta H_4 = +240 \text{ kJ mol}^{-1}$ Electron affinity of chlorine, $\Delta H_5 = -369 \text{ kJ mol}^{-1}$ Lattice energy of MgCl₂, $\Delta H_6 = -3933 \text{ kJ mol}^{-1}$

SPONGE BOB: MAINTAIN EXCELLENT BUT NOT OVER CONFIDENT