Answer Scheme

Concept of Enthalpy

1 Hydrogen gas burns in air to form water:

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}
$$

How much heat is given off if 10.0 kg of hydrogen gas is burnt in excess oxygen?
Based on the thermochemical equation; 2 moles of H_{2} released 572 kJ
\therefore If 10.0 kg of H_{2} released ? kJ
no of mole of $\mathrm{H}_{2}=10,000 \mathrm{~g} / 2.0 \mathrm{~g} \mathrm{~mol}^{-1}=5000 \mathrm{~mol}$
2 moles of H_{2} released 572 kJ
5000 mol of H_{2} released $=5000 \times 572 / 2=1.43 \times 10^{6} \mathrm{~kJ}$
\therefore Heat given off by 10.0 kg of $\mathrm{H}_{2}=-1.43 \times 10^{6} \mathrm{~kJ}$
2 Ammonium nitrate, $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes by the following reaction:
$2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}^{0}=-74.8 \mathrm{~kJ}$
If 74.0 g of $\mathrm{H}_{2} \mathrm{O}$ are formed from the reaction, how much heat was released?
Note: 4 mol of $\mathrm{H}_{2} \mathrm{O}$ not 2 mol of $\mathrm{H}_{2} \mathrm{O}$
Based on the thermochemical equation; 4 moles of H 2 O released 74.8 kJ
\therefore If 74.0 g of $\mathrm{H}_{2} \mathrm{O}$ released? kJ
no of mole of $\mathrm{H}_{2} \mathrm{O}=74.0 \mathrm{~g} / 18.0 \mathrm{~g} \mathrm{~mol}^{-1}=4.111 \mathrm{~mol}$
4 moles of $\mathrm{H}_{2} \mathrm{O}$ released 74.8 kJ
4.111 mol released $=4.111 \times 74.8 / 4=76.9 \mathrm{~kJ}$
\therefore Heat released by 74.0 g of $\mathrm{H}_{2} \mathrm{O}=-76.9 \mathrm{~kJ}$

Calorimetry

1 When 18.70 g sodium chloride was dissolved in $400 \mathrm{~cm}^{3}$ distilled water, the temperature of the solution decreased by $1.0^{\circ} \mathrm{C}$.
[Specific heat capacity of solution $=4.20 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$, density of solution $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]
a) Calculate the heat of solution of sodium chloride.

$$
\begin{aligned}
& Q_{\text {soln }}=m_{s} c_{s} \Delta T \\
&=400 \mathrm{~g} \times 4.20 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} \times 1.0 \mathrm{~K} \\
&=1680 \mathrm{~J} \\
&=1.68 \mathrm{~kJ} \\
& \\
& \therefore Q_{\text {soln of } \mathrm{NaCl}}=+1.68 \mathrm{~kJ}
\end{aligned}
$$

b) Determine the enthalpy of solution of sodium chloride.

$$
\begin{aligned}
& \text { Number of mole of } \mathrm{NaCl}=18.70 \mathrm{~g} / 58.5 \mathrm{~g} \mathrm{~mol}^{-1}=0.3197 \mathrm{~mol} \\
& \text { Enthalpy of solution per mole of } \mathrm{NaCl}=4.60 \times 10^{2} \mathrm{~kJ} / 0.3197 \mathrm{~mol} \\
& =1.44 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \therefore \Delta H_{\text {soln of } \mathrm{NaCl}}=+1.44 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

2 A sample of 0.02 mol octane, $\mathrm{C}_{8} \mathrm{H}_{18}(l)$ was burnt in a bomb calorimeter, the temperature of $1000 \mathrm{~cm}^{3}$ water increased by $24.2^{\circ} \mathrm{C}$.
[Specific heat capacity of solution $=4.20 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$, density of solution $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]
a) What is the enthalpy of combustion of octane?

$$
\begin{aligned}
& \begin{aligned}
Q_{\text {comb }} & =m_{w} c_{w} \Delta T \\
& =1000 \mathrm{~g} \times 4.20 \mathrm{Jg}^{-1} \mathrm{o}^{-1} \times 24.2{ }^{\circ} \mathrm{C} \\
& =1.016 \times 15^{5} \mathrm{~J} \\
& =1.016 \times 10^{2} \mathrm{~kJ}
\end{aligned} \\
& \text { 0.02 } \begin{array}{l}
\text { mol of octane, } C_{8} H_{18}(l) \text { released } 1.016 \times 10^{2} \mathrm{~kJ} \\
1.00 \text { mol of octane, } C_{8} H_{18}(l) \text { released }=1.016 \times 10^{2} \mathrm{~kJ} / 0.02 \mathrm{~mol}=5080 \mathrm{~kJ} \\
\therefore \Delta H_{\text {comb of CsHıs }}=-5080 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
\end{aligned}
$$

b) Write the thermochemical equation for the combustion of octane.

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{c}=-5080 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

3 When 1.00 g of calcium chloride, CaCl_{2}, is added to 60.0 g of water in a coffee cup calorimeter, it dissolves:

$$
\mathrm{CaCl}_{2}(s) \rightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)
$$

The temperature rises from $20.00{ }^{\circ} \mathrm{C}$ to $23.51{ }^{\circ} \mathrm{C}$. Assuming that all the heat given off by the reaction is transferred to the water, calculate the heat for the reaction.
[Specific heat capacity of solution $=4.18 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}$]
$Q_{\text {soln }}=m_{w} c_{w} \Delta T$
$=60.0 \mathrm{~g} \times 4.18 \mathrm{Jg}^{-1} \mathrm{o}^{-1} \times 3.51{ }^{\circ} \mathrm{C}$
$=880.3 \mathrm{~J}$
$=0.880 \mathrm{~kJ} @ 88.0 \times 10^{-2} \mathrm{~kJ}$
\therefore Heat released by 1.00 g of calcium chloride, $\mathrm{CaCl}_{2}=-88.0 \times 10^{-2} \mathrm{~kJ}$

4 An amount of 120.0 mL of coffee in a well-insulated cup at $82.0^{\circ} \mathrm{C}$ is too hot to drink. What volume of cold fresh milk at $15.0^{\circ} \mathrm{C}$ need to be added to the coffee in order to achieve a temperature of $65.0{ }^{\circ} \mathrm{C}$? Assume specific heat capacities and densities of coffee and milk are the same as water.

$$
\begin{aligned}
Q_{\text {cold milk }} & =Q_{\text {hot coffee }} \\
\text { heat absorb by cold milk } & =\text { heat release from hot coffee } \\
m_{\text {milk }} \times \operatorname{c} \times \Delta T & =m_{\text {coffee }} \times \mathrm{x} \times \mathrm{x} \Delta T \\
m_{\text {milk }} \times 4.18 \times(65-15) & =120 \times 4.18 \quad(82-65) \\
m_{\text {milk }} & =40.8 \mathrm{~g}
\end{aligned}
$$

\therefore Volume of cold milk $=40.8 \mathrm{~mL}$
$5100.00 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid was added to excess $100.00 \mathrm{~cm}^{3}$ of $3.0 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide solution. Both solutions are at initial temperature of $30.0^{\circ} \mathrm{C}$ are mixed in a calorimeter. The maximum temperature of the solution is $41.0^{\circ} \mathrm{C}$. [Specific heat capacity of solution $=4.20 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$]
a) Determine the limiting reagent.

Hydrochloric acid
b) Calculate the enthalpy of neutralization for the reaction.

$$
\begin{aligned}
Q_{r x n} & =m_{\text {soln }} c_{\text {soln }} \Delta T \\
& =200.0 \mathrm{~g} \times 4.2 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \times(41.0-30.0){ }^{\circ} \mathrm{C} \\
& =9240 \mathrm{~J}
\end{aligned}
$$

```
No. of mol of \(\mathrm{HCl}=\left(2.0 \mathrm{~mol} \mathrm{dm}^{-3} \times 100\right) / 1000\)
    \(=0.20 \mathrm{~mol}\)
\(\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)\)
```

Based on the equation; no of mol of $\mathrm{H}_{2} \mathrm{O}=$ no of mole of HCl

$$
=0.20 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

0.20 mol of $\mathrm{H}_{2} \mathrm{O}$ produced 9240 J
1.0 mol of $\mathrm{H}_{2} \mathrm{O}$ produced $=(1.0 / 0.2) \times 9240 \mathrm{~J}$

$$
\begin{aligned}
& =4.620 \times 10^{4} \mathrm{~J} \\
& =46.2 \mathrm{~kJ}
\end{aligned}
$$

\therefore Enthalpy of neutralization $=-46.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c) Write the thermochemical equation between hydrochloric acid and potassium hydroxide solution.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}_{n}{ }^{\circ}=-46.2 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$150 \mathrm{~cm}^{3}$ of potassium hydroxide solution of concentration 2.0 M and $250 \mathrm{~cm}^{3}$ of 1.5 M hydroiodic acid were mixed in a calorimeter. If the temperature rise is $10.2^{\circ} \mathrm{C}$, calculate heat evolved from the reaction.

$$
\mathrm{KOH}(a q)+\mathrm{HI}(a q) \rightarrow \mathrm{KI}(a q)+\mathrm{H}_{2} \mathrm{O}(a q)
$$

[Specific heat capacity solution $=4.2 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$; density of solution $\left.=1.0 \mathrm{~g} \mathrm{~cm}^{-3}\right]$

$$
\begin{aligned}
Q_{r x n} & =m_{s} c_{s} \Delta T \\
& =(150 \mathrm{~g}+250 \mathrm{~g}) \times 4.2 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \times 10.2{ }^{\circ} \mathrm{C} \\
& =1.714 \times 10^{4} \mathrm{~J} \\
& =17.14 \mathrm{~kJ}
\end{aligned}
$$

\therefore Heat evolved from the reaction $=-17.1 \mathrm{~kJ}$
7 The enthalpy of combustion of benzoic acid is $-3226.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When 3.2 g benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is completely combusted in a bomb calorimeter containing 2.0 kg of water, the temperature of the water increased by $3.8^{\circ} \mathrm{C}$.
a) Write the thermochemical equation for the combustion of benzoic acid.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{~s})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Delta H=-3226.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

b) Calculate the heat capacity of the calorimeter.

$$
\begin{aligned}
& \text { no of mol of } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}=3.2 \mathrm{~g} / 122 \mathrm{~g} \mathrm{~mol}^{-1}=2.623 \times 10^{-2} \mathrm{~mol} \\
& 1.0 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \text { released } 3226.7 \mathrm{~kJ} \\
& 2.623 \times 10^{-2} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \text { released }=2.623 \times 10^{-2} \times 3226.8 \mathrm{~kJ} \\
& =84.60 \mathrm{~kJ} \\
& =8.460 \times 10^{4} \mathrm{~J} \\
& Q_{\text {comb }}=Q_{\text {water }}+Q_{\text {cal }} \\
& 8.460 \times 10^{4}=\left[2000 g \times 4.184 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \times 3.8\right]+\left[C_{\text {cal }} \times 3.8\right] \\
& C_{\text {cal }}=1.39 \times 10^{4} \mathrm{~J}^{\circ} \mathrm{C}^{-1}
\end{aligned}
$$

$8 \quad 3.00 \mathrm{~g}$ of carbon was burned in a bomb calorimeter containing 2000 g of water at an initial temperature $20{ }^{\circ} \mathrm{C}$. The maximum temperature recorded was $31.3{ }^{\circ} \mathrm{C}$ and the enthalpy of combustion of carbon is $402 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat capacity of bomb calorimeter. The specific heat for water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-402 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

No of $\mathrm{mol} \mathrm{C}=3.00 \mathrm{~g} / 12.0=0.25 \mathrm{~mol}$

1.0 mol of C released $402 \mathrm{~kJ} \mathrm{~mol}^{-1}$

0.25 mol of C released $=0.25 \mathrm{~mol} \times 402 \mathrm{~kJ}$

$$
=100.5 \mathrm{~kJ}=1.005 \times 10^{5} \mathrm{~J}
$$

$$
\begin{aligned}
Q_{\text {comb }} & =Q_{w}+Q_{\text {cal }} \\
& =m_{w} c_{w} \Delta T+C_{c} \Delta T \\
1.005 \times 10^{5} & =[2000 g \times 4.18 \times(31.3-20.0)]+\left[C_{c} \times(31.3-20.0)\right] \\
& =5.34 \times 10^{2} J^{\circ} C^{-1}
\end{aligned}
$$

Hess's Law

1 Standard enthalpy of formation of $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{C}_{5} \mathrm{H}_{12}(g)$ are $-394 \mathrm{~kJ} \mathrm{~mol}^{-1}$, $-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-173 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Determine the heat of combustion of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$ using standard enthalpies of formation given.
$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{c}=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\begin{array}{ll}\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}_{f}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta \mathrm{H}_{f}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}\end{array}$
$\Delta H_{f}=-173 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$5 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})$

$$
\begin{aligned}
\Delta H_{f} & =+173 \mathrm{~kJ} \\
\Delta H_{f} & =-1970 \mathrm{~kJ} \\
\Delta H_{f} & =-1716 \mathrm{~kJ}
\end{aligned}
$$

$\begin{array}{ll}\operatorname{Rev} E q(3): C_{5} H_{12}(\mathrm{~g}) \rightarrow 5 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g}) & \Delta H_{f}=+173 \mathrm{~kJ} \\ \mathrm{Eq}(1) \mathrm{x} 5: 5 \mathrm{C}(\mathrm{s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{f}=-1970 \mathrm{~kJ}\end{array}$
$\mathrm{Eq}(2) \times 6: 6 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
C_{5} H_{12}(g)+8 O_{2}(g) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H_{c}=-3513 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

2 Calculate the heat of combustion of methane using standard heats of formation below:

$$
\begin{align*}
& \Delta \mathrm{H}_{f} \mathrm{CO}_{2}(\mathrm{~g})=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{H}_{f} \mathrm{H}_{2} \mathrm{O}(l)=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{H}_{f} \mathrm{CH}_{4}(g)=-75 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H_{c}=x \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& C(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H_{f}=-75 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}\\
& C(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{f}=-394 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}\\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H_{f}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{3}\\
& \text { Maintain (1): } \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H_{f}=-75 \mathrm{~kJ} \\
& \text { Maintai (2): } \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{f}=-394 \mathrm{~kJ} \\
& \text { (2) x 2: } \quad 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{f}=-572 \mathrm{~kJ} \\
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}_{\mathrm{c}}=-891 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \text { @ } \\
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H_{f}=\Sigma n \Delta H \text { product }-\Sigma n \Delta H \text { reactant } \\
& \Delta H_{c} \mathrm{CH}_{4}(\mathrm{~g})=-394+(2 x-286)+75 \\
& =-891 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{align*}
$$

3 Determine the enthalpy of formation of hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ by using the data below.

	$\Delta \mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$	-241.82
$2 \mathrm{H}(g)+\mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$	-926.92
$2 \mathrm{H}(g)+2 \mathrm{O}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(g)$	-1070.62
$2 \mathrm{O}(g) \rightarrow \mathrm{O}_{2}(g)$	-498.34
$\mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(g)$	+51.46

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$
$\Delta H_{f}=x \mathrm{~kJ} \mathrm{~mol}^{-1}$
Rev Eq (5) $\quad: \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$
Maintain Eq (3): $2 \mathrm{H}(\mathrm{g})+2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
$\Delta H=-51.46 \mathrm{~kJ}$
Maintain $\mathrm{Eq}(\mathrm{l}): \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta H=-1070.62 \mathrm{~kJ}$
Rev $\mathrm{Eq}(2) \quad: \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
$\Delta H=-241.82 \mathrm{~kJ}$
$\operatorname{Rev} E q(4) x^{1 / 2}: 1 / 2 O_{2}(g) \rightarrow O(g)$
$\Delta H=+926.92 \mathrm{~kJ}$
RevEq (4) $x 1 / 2: 1 / 2 O_{2}(g) \rightarrow O(g)$
$\Delta H=+249.17 \mathrm{~kJ}$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \quad \Delta H_{f}=-187.81 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

4 Draw the Born-Haber cycle for the formation of magnesium chloride, MgCl_{2} from magnesium metal and chlorine gas. Calculate the enthalpy of formation of MgCl_{2}. Given:

Heat of sublimation of magnesium, $\Delta \mathrm{H}_{1}=+149 \mathrm{~kJ} \mathrm{~mol}^{-1}$
First ionization energy of magnesium, $\Delta \mathrm{H}_{2}=+740 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Second ionization energy of magnesium, $\Delta \mathrm{H}_{3}=+1456 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Heat of atomization of chlorine, $\Delta \mathrm{H}_{4}=+240 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Electron affinity of chlorine, $\Delta \mathrm{H}_{5}=-369 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Lattice energy of $\mathrm{MgCl}_{2}, \Delta \mathrm{H}_{6}=-3933 \mathrm{~kJ} \mathrm{~mol}^{-1}$

