ENHANCEMENT QUESTION: THERMOCHEMISTRY

- **1.** Calculate the heat transferred when a 5.5 g nail is cooled from 37 °C to 25 °C.[Specific heat of iron = 0.450 J/gK]Answer: 29.7 kJ
- If a gold ring with a mass of 5.5 g changes in temperature from 25.0 °C 28.0 °C, how much energy (in joules) has it absorbed?
 [Specific heat capacity of gold = 0.129 J/g°C]
 Answer: + 2.13 kJ
- 3. The addition of 250 J to 30.0 g of copper initially at 22.0 °C will change its temperature to what final value? [*c* of $Cu = 0.387 Jg^{-10}C^{-1}$] Answer: 43.5 °C
- 4. A quantity of 1.922 g of methanol (CH₃OH) was burned in a constant volume bomb calorimeter. Consequently, the temperature of the water rose by 4.20 °C. If the quantity of water surrounding the calorimeter was exactly 2000g and the heat capacity of the calorimeter was 2.02 kJ/°C, calculate the molar heat of combustion of methanol. *Answer: 731.9 kJ mol⁻¹*
- 5. A 1.00 mol sample of propane, a gas used for cooking, was placed in a bomb calorimeter with excess oxygen and ignited. The initial temperature of the calorimeter is 25.000 °C and its total heat capacity was 97.1 kJ°C⁻¹. The reaction raised the temperature of the calorimeter to 27.282 °C.
 - a) How many J were liberated in this reaction? Answer: $-2.22 \times 10^5 J$
 - b) What is heat of reaction of propane with oxygen expressed in kJ/mol of C₃H₈ burned?
 Answer: 222 kJ mol⁻¹
- 6. A quantity of 400 mL of 0.6 *M* HNO₃ is mixed with 400 mL of 0.3 M Ba(OH)₂ in coffee-cup calorimeter (simple calorimeter) that has a heat capacity of 387 J/°C. The initial temperature of both solutions is the same at 18.88 °C. What is the final temperature of the solution? [*Heat of neutralization* = -56.2 kJ/mol] Answer: 22.49 °C
- 7. Nitrogen oxides undergo many interesting reactions. Calculate ΔH for the overall equation

 $2 \operatorname{NO}_2(g) + \operatorname{O}_2(g) \rightarrow \operatorname{N}_2\operatorname{O}_5(s)$ from the following equations:

$N_2O_5(s) \rightarrow 2 NO(g) + O_2(g)$	$\Delta H = + 223.7 \text{ kJ}$	
$NO(g) + O_2(g) \rightarrow NO_2(g)$	$\Delta H = -57.1 \text{ kJ}$	Answer: – 109.5 kJ

8. The common lead-acid car battery produces a large burst of current, even at low temperatures, and is rechargeable. The reaction that occurs while recharging a "dead" battery is:

 $2 \operatorname{PbSO}_4(s) + 2 \operatorname{H}_2O(l) \rightarrow \operatorname{Pb}(s) + \operatorname{PbO}_2(s) + 2 \operatorname{H}_2\operatorname{SO}_4(l)$ Use the following equations to calculate ΔH_{rxn} of the above reaction. Pb (s) + PbO₂(s) + 2 SO₃(g) \rightarrow 2 \operatorname{PbSO}_4(s) \qquad \Delta H = -768 \text{ kJ} SO₃(g) + H₂O(l) \rightarrow H₂SO₄(l) \qquad \Delta H = -132 \text{ kJ} Answer: + 504 kJ **9.** Oxidation of ClF by F_2 yields ClF₃, an important fluorinating agent: ClF $(g) + F_2(g) \rightarrow ClF_3(g)$

Use the following thermochemical equation to calculate ΔH^{0} for the production of ClF₃:

 $\begin{array}{ll} 2 \operatorname{ClF}(g) + O_2(g) \rightarrow \operatorname{Cl}_2O(g) + \operatorname{OF}_2(g) & \Delta H^{\circ} = +167.5 \text{ kJ} \\ 2 \operatorname{F}_2(g) + O_2(g) \rightarrow 2 \operatorname{OF}_2(g) & \Delta H^{\circ} = -43.5 \text{ kJ} \\ 2 \operatorname{ClF}_3(g) + 2 \operatorname{O}_2(g) \rightarrow \operatorname{Cl}_2O(g) + 3 \operatorname{OF}_2(g) & \Delta H^{\circ} = +394.1 \text{ kJ} \\ & Answer: -135.1 \text{ kJ} \end{array}$

10. Calculate the standard enthalpy of formation of $CS_2(l)$ given that: C (graphite) + $O_2(g) \rightarrow CO_2(g)$ S (rhombic) + $O_2(g) \rightarrow SO_2(g)$ $CS_2(l) + 3 O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$ $\Delta H^{\circ}_{f} = -296.1 \text{ kJ}$ $\Delta H^{\circ}_{rxn} = -1072 \text{ kJ}$ *Answer: + 86.3 kJ mol*⁻¹

11. Calculate the lattice energy of calcium chloride (CaCl₂); given that:
Heat of sublimation of calcium = + 121 kJ/mol
First ionization energy of calcium = + 589.5 kJ/mol
Second ionization energy of calcium = + 1145 kJ/mol

Enthalpy of atomization of chlorine= + 121.4 kJ/molElectron affinity of chlorine= - 349 kJ/molEnthalpy of formation of CaCl2= - 795 kJ/molAnswer: - 2195.3 kJ mol⁻¹

12. With the following data, calculate $\Delta H_{\text{lattice}}$ of CsCl (*s*): Heat of sublimation of cesium = + 78.2 kJ First ionization energy of cesium = + 375.7 kJ Enthalpy of dissociation $\frac{1}{2}\text{Cl}_2(g)$ = + 122 kJ Electron affinity of chlorine = - 349 kJ Enthalpy of formation of CsCl(*s*) = - 442.8 kJ

Answer: - 669.7 kJ mol⁻¹

13. Construct a Born–Haber cycle to calculate the lattice energy of KBr based on the following data:

Standard enthalpy of formation of KBr $= -392 \text{ kJmol}^{-1}$ Enthalpy of sublimation of potassium $= +90 \text{ kJmol}^{-1}$ First ionization energy of potassium $= +420 \text{ kJmol}^{-1}$ Enthalpy of atomization of bromine $= +112 \text{ kJmol}^{-1}$ Electron affinity of bromine $= -342 \text{ kJmol}^{-1}$ Answer: - 672 kJ mol^1