CHAPTER 7 : IONIC EQUILIBRIA

SESI 2010/2011

1.	(a)	(i) What is meant by pH of solution?	[1 mark]
		(ii) Derive the relationship between the pH and pOH of a solution.	[2 marks]
	(b)	Pyridine, C_5H_5N has a pK_b = 8.76 , is a bad-smelling liquid.	
		(i) Calculate Kb for C_5H_5N .	[2 marks]
		(ii) Calculate pH of 0.20 M pyridine.	[5 marks]
2.	(a)	Define the equivalence point and the end point for a titration.	[2 marks]
	(b)	A 30.0 mL HCl solution is titrated to the end point by 20.0 mL of 0.2	M NaOH solution.

- Calculate the molarity of the HCl solution. [3 marks] (c) At 25° C ,2.20 % of benzoic acid, C₆H₅COOH in 0.125 M solution is ionized. Write the
- ionisation equation for benzoic acid in water. Determine the acid dissociation constant, Ka for benzoic acid and calculate pH for the solution. [5 marks]

NO	PART	SCHEME	MARK		
1	(a)(i)	pH is define as the negative of the logarithm of $[H_3O^+]$ @ $[H^+]$ pH = -log $[H_3O^+]$			
	(a)(ii)	$K_{w} = [H_{3}O^{+}] [OH^{-}] = 1.0 \times 10^{-14}$ $-\log K_{w} = -\log [H_{3}O^{+}] [OH^{-}] = -\log 1.0 \times 10^{-14}$ $p K_{w} = -\log [H_{3}O^{+}] - \log [OH^{-}] = 14$ $p K_{w} = pH + pOH = 14 @$ $pH = p K_{w} - pOH @$ = 14 - pOH			
	(b)(i)	$K_b = antilog (-pK_b) @$ = antilog (- 8.76) = 1.74 x 10 ⁻⁹			
	(b)(ii)	pH of 0.2 M $C_{5}H_{5}N + H_{2}O = C_{5}H_{5}NH^{+} + OH^{-}$ $K_{b} = \frac{[C_{5}H_{5}NH^{+}][OH^{-}]}{[C_{5}H_{5}N]- x}$			

		Since $K_b \ll 1$, assume that $C_5 H_5 N - x \approx 0.2$	
		$1.74 \times 10^{-9} = \frac{x^2}{0.2}$	
		0.2	
		$X = [OH^{-}] = 1.865 x 10^{-5} M$	
		pOH = -log [OH ⁻]	
		$= -\log(1.865 \times 10^{-5})$	
		= 4.73	
		- 4.75	
		pH = 14 – 4.73	
		= 9.27	
2	(2)		
2	(a)	Equivalence point	
		The point is a tituation the chamical amount of tituant added	
		The point in a titration the chemical amount of titrant added	
		is equal to the chemical amount of the substance being	
		titrated @ mol H ⁺ = mol OH ⁻	
		End point	
		The point in a titration at which the indicator signals that a	
		stoichiometric amount of the first reactant has been added to	
		the second reactant. @ colour of indicator changes when its	
		reach equivalence point.	
	(b)	$HCI + NaOH \longrightarrow NaCI + H_2O$	
		@ nHCl = nNaOH	
		nHCl = $(20.0 \times 10^{-3}) \times 0.2$	
		$= 4.0 \times 10^{-3}$ mol	
		Molarity HCl = $\frac{4.0 \times 10^{-3}}{30.0 \times 10^{-3}}$	
		30.0 x 10 ⁻³	
		= 0.13 molL ⁻¹	
	(c)	$C_6H_5COOH (aq) = C_6H_5COO^- (aq) + H^+ (aq)$	
	(c)		
		$\begin{bmatrix} \end{bmatrix}_{\Delta}$ -x +x +x	
		[] _{eq} 0.125-x x x	
		$[C_{1}H_{2}COO^{-1}][H^{+}]$	
		$Ka = \frac{[C_6H_5COO^-][H^+]}{[C_6H_5COOH]}$	
		[-02000]	
		$Ka = \frac{x^2}{0.125 - x}$	
		$\mathbf{Nd} = \frac{1}{0.125 - x}$	
		α = 2.2 %	
		$\alpha = \frac{[H^+]}{[C_6H_5COOH]} \times 100\%$	
		[L ₆ H ₅ COOH]	

	$[H^+] = \frac{2.1 x 0.125}{100}$
	= 2.75 x 10^{-3} M X = 6.186 x 10^{-5} OR Assume 0.125 – 2.75 x $10^{-3} \approx 0.125$
	$= \frac{(2.75 \times 10^{-3})^2}{0.125}$ = 6.05 x 10 ⁻⁵
	$= 6.05 \times 10^{-3}$ pH = -log(2.75 x 10 ⁻³) = 2.56

SESI 2011/2012

1.	(a)	Define Bronsted-Lowry acid and base.	[2 marks]
	(b)	Explain how 100mL HCl solution with pH 1.05 can be prepared	from 8.50 M HCl. [4 marks]
	(c)	In an acid-base titration, 10 mL of 0.50 M HCl was added to 40 Determine the pH of the solution formed.	mL of 0.10 M NaOH. [4 marks]
2.	(a)	At 25°C, 0.69 % hydrazine is ionized in 0.02 M hydrazine solutio	on.
	(b)	(i) Calculate the concentration of OH ⁻ ion in the solution. (ii) Calculate the ionisation constant, Kb of hydrazine. Ionisation reaction of phenylacetic acid, $C_6H_5CH_2COOH$ is as followed as the second state of the sec	[3 marks] [2 marks] lows:
	C ₆	$H_5CH_2COOH + H_2O \implies C_6H_5CH_2COO^- + H_3O^+$	
		(i) Calculate the concentration of $C_6H_5CH_2COO^-$ ion in 0.19 $C_6H_5CH_2COOH$. (Kb = 4.90 x 10 ⁻⁵)	9 M solution of [4 marks]
		(ii) What is the pH of this solution?	[1 marks]

NO	PART	SCHEME	MARKS	
1	1 (a) An acid is a proton donor			
		A base is a proton acceptor	1	
	(b)	$pH = -log[H^+] = 1.05$	1	
		[H ⁺] = 0.089 M		
		$M_1V_1 = M_2V_2$ @		

		$(0.089)(100) = V_1$	1
		8.5	
		V ₁ = 1.05 mL	1
		1.05 mL HCl 8.5 M is added with distilled water until the	1
		volume becomes 100 mL.	
	(c)		
	(-)	HCl + NaOH \longrightarrow NaCl + H ₂ O	
		$n_i = \frac{10 \times 0.5}{1000}$ $\frac{40 \times 0.1}{1000}$ @	
		$= 5 x 10^{-3} \qquad 4 x 10^{-3}$	1
		$n_f = 1 x 10^{-3}$ 0 $4 x 10^{-3}$ 0	1
		$n_f = 1 \times 10^{-5} = 0^{-5} - 4 \times 10^{-5} = 0^{-5}$	
		$[H^+] = \frac{1 \times 10^{-3}}{5}$	
		<u> 1000 1000 1000 1000 1000 1000 1000 1000 1000 </u>	
		= 0.02 M	1
		pH = -log [0.02]	1
		= 1.7	Ţ
2	(a) (i)		
		$N_2H_4 + H_2O = N_2H_5^+ + OH^-$	1
			1
		$[OH^{-}] = [N_2H_5^{+}]$	1
		= (0.69 /100) x 0.020	
		$= 1.38 \times 10^{-4} M$	1
	(2)(;;)	$Kb = [N_2H_5^{\dagger}][OH^{-}] / [N_2H_4]$	
	(a)(ii)	$KD = [N_2 n_5] [On] / [N_2 n_4] = (1.38 \times 10^{-4})^2$	1
		$0.020 - (1.38 \times 10^{-4})$	
		a a a a a ⁷	
		$= 9.59 \times 10^{-7}$	1
	(b)(i)	$C_6H_5CH_2COOH + H_2O \longrightarrow C_6H_5CH_2COO^- + H_3O^+$	
		$\begin{bmatrix}] & 0.19 \text{ M} & 0 & 0 \\ \Delta & -x & +x & +x \end{bmatrix}$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
		$Ka = \frac{[C_6H_5CH_2COO^{-}][H_3O^{+}]}{[C_6H_5CH_2COOH]} \qquad @$	1
	1	$[C_6H_5CH_2COOH]$ @	1

	$=\frac{x^2}{0.19-x}$ Since Ka << 1, assume that $0.19 - x \approx 0.19$	1
	$4.9 \times 10^{-5} = \frac{x^2}{0.19 - x}$	1
	$X = 3.05 x 10^{-3}$ $X = [C_6H_5CH_2COO^{-}] = [H_30^{+}] = 3.05 x 10^{-3} M$	1
(b)(ii)	pH = $-\log [H_3O^+]$ = $-\log (= 3.05 \ x \ 10^{-3})$ = 2.52	1

UPS TK025-SESI 2012/2013

1. (a)The pH of a fruit juice is 3.52. Calculate the concentration of H⁺(aq) ions present in
the fruit juice.[2 marks]

(b) Pyridine, C_5H_5N is a weak base which was discovered in coal tar in 1846. If the percentage dissociation of 0.0015 moldm⁻³ C_5H_5N is 0.10 %, calculate

- (i) the concentrations of OH⁻ at equilibrium
- (ii) the base dissociation constant, Kb for C_5H_5N
- (iii) the acid dissociation constant, Ka for its conjugate acid, $C_5H_5NH^+$

[8 marks]

- 2. (a) Sodium benzoate, C_6H_5COONa is a salt formed when sodium hydroxide, NaOH reacts with benzoic acid, C_6H_5COOH [Ka= 6.3 x 10⁻⁵]
 - (i) Write an equation for this reaction.
 - (ii) Classify the salt formed. Explain by using the appropriate equations.

[4 marks]

(b) Determine the pH of the solution formed when 30 mL of 0.25 m NaOH solution is titrated with 40 mL of 0.10 M of HCl solution.

[6 marks]

NO	PART			SCHEME		MARK
1	(a)					
		pH = - log [l				1
		-log [H ⁺] = 3				
		[H ⁺] = 3.0 x	10 ⁻⁴ M			1
	(b) (i)					
		Equation				1
		[]initial	0.0015	$O(I) = C_5 H_5 N H^+ (a)$	<u>q)+ OH (aq)</u> 0	1
		[]change	-x	0 +x	+x	
		[]eq	0.0015-x	X	X	1
		[]54	0.0013 X	X	X	
		$\alpha = \frac{[C_5H_5N]}{[C_5H_5N]}$	<u>change</u> X 100 % initial	@		
		[C ₅ H ₅ N] _{chan}	$_{\rm ge} = \frac{0.10}{100} \times 0.0015$			
		= $1.5 \times 10^{-6} \text{ moldm}^{-3} = x$				1
		[OH ⁻] = 1.5 x 10 ⁻⁶ moldm ⁻³				
	(ii)	$K_{b} = \frac{[C_5 H_5 N_5]}{[C_5]}$	^{н+}][0H ⁻] ₅ H ₅] @			1
		$= \frac{(1.5 x 10)}{0.0015}$	$\frac{(x-6)^2}{(x-x)^2}$			
		= 1.5 x 10) ⁻⁹ moldm ⁻³			1
	(;;;)					
	(iii)	$K_{a} = \frac{K_{w}}{K_{b}} =$	$\frac{1.0 \ x \ 10^{-14}}{1.5 \ x \ 10^{-9}}$			1
		= 6.7 x 1	0 ⁻⁵ mol dm ⁻³			1
		TOTAL				10

NO	PART	ANSWER SCHEME	MARKS
2	(a)(i)	C_6H_6COOH (aq) + NaOH (aq) $\longrightarrow C_6H_5COONa$ (aq) + H ₂ O (I)	1
	(ii)	Basic salt	1
		$C_6H_5COONa \longrightarrow C_6H_5COO^- + Na^+$	1
		$C_6H_5COO^- + H_2O \implies C_6H_6COOH + OH^-$	Ţ
		Anion from the salt will undergo hydrolysis to give basic solution @ pH > 7	
	(b)	n(NaOH) = MV = $(0.25)(0.03)$ = 7.5 x 10 ⁻³ mol	1
		n(HCl) = MV = $(0.10)(0.04)$ = 4.0×10^{-3} mol	1
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1
		$M = \frac{3.5 \times 10^{-3}}{0.07}$ = 0.05 M	1
		pOH = - log [OH ⁻] = - log (0.05) = 1.30	1
		pH = 14 - pOH = 14 - 1.30 = 12.7	1
		TOTAL	10

SESI 2009/2010-TS027

1.	a)	i)	Define Bronsted-Lowry acids and bases.	
		ii)	Calculate the pH of 0.003 M of HNO_3 acid	[3 marks]
	b)	[Ka =	nolarity of aqueous ethanoic acid (CH ₃ COOH) is 1.12 M. 1.8×10^{-5} M]. llate the	
		i)	pKa	
		ii)	concentration oh H^+ ions	
		iii)	degree of dissociation of acid	[7 marks]

ANSWER SCHEME- SESI 2009/2010-TS027

NO	PART	SCHEME	MARKS
1	(a) i.	Acids are proton donors while bases are proton acceptors.	1
	(a) ii.	$HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^-$	
		Initial: 0.003 0 0 Final: 0 0.003 0.003	
		$[H_3O^+] = 0.003 M$ @ pH = - log $[H_3O^+]$ @ - log 0.003 = 2.52	1
	(b)i	pKa = -log Ka = - log 1.8 x 10 ⁻⁵ = 4.74	1 1 1
	(b)ii.	$CH_{3}COOH + H_{2}O \implies H_{3}O^{+} + CH_{3}COO^{-}$ Initial: 1.12 0 0 Final: 1.12-x x x $Ka = \frac{[CH_{3}COO^{-}][CH_{3}COO^{-}]}{[CH_{3}COOH]}$ @ 1.8 x 10 ⁻⁵ = $\frac{x^{2}}{1.12-x}$ Assume x is small 1.12 - x = 1.12	1 1
		Assume x is small, $1.12 - x \approx 1.12$	

TOTAL	10
$=\frac{4.49 \times 10^{-10}}{1.12}$ = 4.0 × 10 ⁻³	1
$\alpha = \frac{[]change}{[]initial} \qquad @$ 4.49×10^{-3}	1
$X = [H_3O^+] = 4.49 x 10^{-3} M$	1