CHAPTER 7 : IONIC EQUILIBRIA

SESI 2010/2011

1.

(a) (i) What is meant by pH of solution?
[1 mark]
(ii) Derive the relationship between the pH and pOH of a solution. [2 marks]
(b) Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ has a $\mathrm{pK}_{\mathrm{b}}=8.76$, is a bad-smelling liquid.
(i) Calculate Kb for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$.
[2 marks]
(ii) Calculate pH of 0.20 M pyridine.
[5 marks]
2.
(a) Define the equivalence point and the end point for a titration.
[2 marks]
(b) A 30.0 mL HCl solution is titrated to the end point by 20.0 mL of 0.2 M NaOH solution. Calculate the molarity of the HCl solution.
[3 marks]
(c) At $25^{\circ} \mathrm{C}, 2.20 \%$ of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ in 0.125 M solution is ionized. Write the ionisation equation for benzoic acid in water. Determine the acid dissociation constant, Ka for benzoic acid and calculate pH for the solution.

NO	PART	SCHEME	MARK
1	(a)(i) (a)(ii)	pH is define as the negative of the logarithm of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] @\left[\mathrm{H}^{+}\right]$ $\begin{aligned} & \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\ & \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\ & -\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=-\log 1.0 \times 10^{-14} \\ & \mathrm{p} \mathrm{~K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]=14 \\ & \mathrm{p} \mathrm{~K}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14 @ \\ & \mathrm{pH}=\mathrm{pH} \mathrm{~K}_{\mathrm{w}}-\mathrm{pOH} @ \\ & \quad=14-\mathrm{pOH} \end{aligned}$	1
	(b)(i) (b)(ii)	$\begin{aligned} \mathrm{K}_{\mathrm{b}} & =\operatorname{antilog}\left(-\mathrm{p} \mathrm{~K}_{\mathrm{b}}\right) @ \\ & =\operatorname{antilog}(-8.76) \\ & =1.74 \times 10^{-9} \end{aligned}$ pH of 0.2 M $\begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-} \\ & \mathrm{K}_{\mathrm{b}}=\left[\mathrm{C}_{5}-\mathrm{H}_{5} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right] \\ & {\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]-\mathrm{x}} \end{aligned}$	

		$\begin{aligned} & \text { Since } \mathrm{K}_{\mathrm{b}} \ll 1 \text {, assume that } \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}-\mathrm{x} \approx 0.2 \\ & 1.74 \times 10^{-9}=\frac{x^{2}}{0.2} \\ & \begin{aligned} & \mathrm{X}= {\left[\mathrm{OH}^{-}\right]=1.865 \times 10^{-5} \mathrm{M} } \\ & \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\ & \quad=-\log \left(1.865 \times 10^{-5}\right) \\ & \quad=4.73 \end{aligned} \\ & \begin{aligned} \mathrm{pH} & =14-4.73 \\ & =9.27 \end{aligned} \end{aligned}$	
2	(a)	Equivalence point The point in a titration the chemical amount of titrant added is equal to the chemical amount of the substance being titrated @ $\mathrm{mol} \mathrm{H}^{+}=\mathrm{mol} \mathrm{OH}^{-}$ End point The point in a titration at which the indicator signals that a stoichiometric amount of the first reactant has been added to the second reactant. @ colour of indicator changes when its reach equivalence point.	
	(b)		
	(c)	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons$ []$_{0}$ 0.125$\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$	

Compilation Past Year Questions UPS TK 025

2013/2014
$\left.\begin{array}{|l|l|l|}\hline & {\left[H^{+}\right]=\frac{2.1 \times 0.125}{100}} \\ =2.75 \times 10^{-3} \mathrm{M} \\ \mathrm{X}=6.186 \times 10^{-5} \\ \text { OR } \\ \text { Assume } 0.125-2.75 \times 10^{-3} \approx 0.125 \\ =\frac{\left(2.75 \times 10^{-3}\right)^{2}}{0.125} \\ =6.05 \times 10^{-5} \\ \mathrm{pH}=-\log \left(2.75 \times 10^{-3}\right) \\ & =2.56\end{array}\right]$

SESI 2011/2012

1.

(a) Define Bronsted-Lowry acid and base.
[2 marks]
(b) Explain how 100 mL HCl solution with pH 1.05 can be prepared from 8.50 M HCl .
[4 marks]
(c) In an acid-base titration, 10 mL of 0.50 M HCl was added to 40 mL of 0.10 M NaOH . Determine the pH of the solution formed.
2. (a) At $25^{\circ} \mathrm{C}, 0.69 \%$ hydrazine is ionized in 0.02 M hydrazine solution.
(i) Calculate the concentration of OH^{-}ion in the solution. [3 marks]
(ii) Calculate the ionisation constant, Kb of hydrazine. [2 marks]
(b) Ionisation reaction of phenylacetic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ is as follows:

(i) Calculate the concentration of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}$ion in 0.19 M solution of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH} .\left(\mathrm{Kb}=4.90 \times 10^{-5}\right)$
(ii) What is the pH of this solution?
[4 marks]
[1 marks]

NO	PART	SCHEME	MARKS
1	(a)	An acid is a proton donor A base is a proton acceptor	1
	(b)	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.05$ $\left[\mathrm{H}^{+}\right]=0.089 \mathrm{M}$ $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} @$	1

		$\begin{aligned} & \frac{(0.089)(100)}{8.5}=V_{1} \\ & V_{1}=1.05 \mathrm{~mL} \end{aligned}$ 1.05 mL HCl 8.5 M is added with distilled water until the volume becomes 100 mL .	1 1 1
	(c)	$\begin{aligned} & \quad \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{n}_{\mathrm{i}}=\frac{10 \times 0.5}{1000} \quad \frac{40 \times 0.1}{1000} @ \\ & =5 \times 10^{-3} \mathrm{n} \times 10^{-3} \\ & \mathrm{n}_{\mathrm{f}}=1 \times 10^{-3} \mathrm{O} \\ & {\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-3}}{\frac{5}{1000}}} \\ & =0.02 \mathrm{M} \\ & \mathrm{pH}=-\log [0.02] \\ & \quad \end{aligned}$	1 1 1 1 1
2	(a) (i) (a)(ii)	$\begin{aligned} & \quad \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2} \mathrm{H}_{5}^{+}+\mathrm{OH}^{-} \\ & \begin{aligned} {[\mathrm{OH}]=} & {\left[\mathrm{N}_{2} \mathrm{H}_{5}^{+}\right] } \\ & =(0.69 / 100) \times 0.020 \\ & =1.38 \times 10^{-4} \mathrm{M} \end{aligned} \\ & \begin{aligned} & \mathrm{Kb}=\left[\mathrm{N}_{2} \mathrm{H}_{5}^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{N}_{2} \mathrm{H}_{4}\right] \\ &=\left(1.38 \times 10^{-4}\right)^{2} \\ & 0.020-\left(1.38 \times 10^{-4}\right) \end{aligned} \\ & =9.59 \times 10^{-7} \end{aligned}$	1
	(b)(i)		1

| $=\frac{x^{2}}{0.19-x}$ |
| :--- | :--- | :--- | :--- |
| Since $\mathrm{Ka} \ll 1$, assume that $0.19-\mathrm{x} \approx 0.19$ |
| $4.9 \times 10^{-5}=\frac{x^{2}}{0.19-x}$ |
| $\mathrm{X}=3.05 \times 10^{-3}$ |
| $\mathrm{X}=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.05 \times 10^{-3} \mathrm{M}$ |$\quad 1$| 1 |
| :--- |
| (b)(ii)$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
 $=-\log \left(=3.05 \times 10^{-3}\right)$
 $=2.52$ |

UPS TK025-SESI 2012/2013

1. (a) The pH of a fruit juice is 3.52 . Calculate the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ ions present in the fruit juice.
(b) Pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ is a weak base which was discovered in coal tar in 1846 . If the percentage dissociation of $0.0015 \mathrm{moldm}^{-3} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ is 0.10%, calculate
(i) the concentrations of OH^{-}at equilibrium
(ii) the base dissociation constant, Kb for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
(iii) the acid dissociation constant, Ka for its conjugate acid, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
2. (a) Sodium benzoate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}$ is a salt formed when sodium hydroxide, NaOH reacts with benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left[\mathrm{Ka}=6.3 \times 10^{-5}\right]$
(i) Write an equation for this reaction.
(ii) Classify the salt formed. Explain by using the appropriate equations.
[4 marks]
(b) Determine the pH of the solution formed when 30 mL of 0.25 m NaOH solution is titrated with 40 mL of 0.10 M of HCl solution.

SESI 2009/2010-TS027

1.

a) i) Define Bronsted-Lowry acids and bases.
ii) Calculate the pH of 0.003 M of HNO_{3} acid
b) The molarity of aqueous ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is 1.12 M .
$\left[\mathrm{Ka}=1.8 \times 10^{-5} \mathrm{M}\right.$].
Calculate the
i) $\quad \mathrm{pKa}$
ii) concentration oh H^{+}ions
iii) degree of dissociation of acid

ANSWER SCHEME- SESI 2009/2010-TSO27

NO	PART	SCHEME	MARKS
	(a) i.	Acids are proton donors while bases are proton acceptors.	1
	(a) ii.	$\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$ Initial: 0.003 0 0 Final: 0 0.003 0.003 $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.003 \mathrm{M}$ $@ \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $@-\log 0.003$ $=2.52$	1 1
	(b) i	$\begin{aligned} \text { pKa } & =-\log \text { Ka } \\ & =-\log 1.8 \times 10^{-5} \\ & =4.74 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(b)ii.	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ Initial: 1.12 0 0 Final: $1.12-x$ x $x$$\mathrm{Ka}=\frac{\left[\mathrm{CH}_{3} 3 \mathrm{COO}^{-}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}^{-}\right]}$ @ $1.8 \times 10^{-5}=\frac{x^{2}}{1.12-x}$ Assume x is small, $1.12-\mathrm{x} \approx 1.12$	1 1

	$\mathrm{X}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $=4.49 \times 10^{-3} \mathrm{M}$ $\alpha=\frac{[\text {]change }}{\text { []initial }}$ @ $=\frac{4.49 \times 10^{-3}}{1.12}$ $=4.0 \times 10^{-3}$	1
	TOTAL	1

