# SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY

# ANSWER SCHEME UPS 2004/2005 SK027

1 (a) Use the data in the table below to answer the following questions:

| Enthalpy change                      | $\Delta H (kJ/mol)$ |
|--------------------------------------|---------------------|
| Atomization energy of iron           | + 150               |
| First ionization energy of iron      | + 736               |
| Second ionization energy of iron     | +1450               |
| Atomization energy of chlorine       | + 121               |
| Electron affinity of chlorine        | - 364               |
| Lattice energy of iron (II) chloride | - 2493              |

- i. Define enthalpy of formation. Heat change when 1 mole of a compound is formed from its elements in their stable states at standard condition (25 °C and 1 atm).
- ii. Sketch the Born-Haber cycle for iron (II) chloride.



iii. Hence, calculate the enthalpy of formation for iron (II) chloride.  $\Delta H_f = (+150) + (+736) + (+1450) + (+121 x 2) + (-364 x 2) + (-2493)$   $= -643 \text{ kJ mol}^{-1}$ 

[8 marks]

### ANSWER SCHEME UPS 2005/2006 SK027

2 (a) Define the enthalpy of combustion. Heat released when 1 mole of substance/compound is completely combusted in excess oxygen at standard condition (25 °C and 1 atm).

[1 mark]

(b) A bomb calorimeter experiment is performed with powdered xylose,  $C_5H_{10}O_5$  as the combustible substance. The data obtained are:

| Mass of xylose burned           | = 1.183 g                                |
|---------------------------------|------------------------------------------|
| Heat capacity of calorimeter    | $= 4.728 \text{ kJ} \circ \text{C}^{-1}$ |
| Initial calorimeter temperature | = 23.29 °C                               |
| Final calorimeter temperature   | = 27.19 °C                               |

i. Calculate the heat of combustion of xylose, in kilojoule per mole?

Heat given off by xylose = heat absorbed by the calorimeter  $Q = C\Delta T$   $= 4.728 \text{ kJ} \,^{\circ}\text{C}^{-1} (27.19 - 23.29) \,^{\circ}\text{C}$  = 18.44 kJMole of xylose = 1.183 / 150  $= 7.89 \times 10^{-3} \text{ mol}$ Heat of combustion =  $18.44 \text{ kJ} / 7.89 \times 10^{-3}$  = 2337.14 kJ/mol  $= 2337 \text{ kJ/mol} \oplus 2.337 \times 10^3 \text{ kJ/mol}$   $\Delta H_c \text{ xylose } = -2.337 \times 10^3 \text{ kJ mol}^{-1}$ Write the thermochemical equation for combustion of xylose

- ii. Write the thermochemical equation for combustion of xylose.  $C_5H_{10}O_5(s) + 5O_2(g) \rightarrow 5CO_2(g) + 5H_2O(l) \Delta H = -2.337 \times 10^3 \text{ J mol}^{-1}$ [7 marks]
- (c) Which substance in the following pairs has larger lattice energy? Explain.

KCl or RbCl

KCl. The size of K<sup>+</sup> is smaller than Rb<sup>+</sup>.

[2 marks]

## ANSWER SCHEME UPS 2006/2007 SK027

3 (a) A 0.1375 g of magnesium is burned in a constant volume bomb calorimeter that has a heat capacity of 1769 J °C<sup>-1</sup>. If the calorimeter contains 300.0 g of water and the temperature increases by 1.126 °C, calculate the heat of combustion of magnesium in kJ mol<sup>-1</sup>.

[5 marks]

Heat released by combustion = heat absorbed + heat absorbed by calorimeter by water

$$q = C_c \Delta T + m_w c_w \Delta T$$
  
= [1769 J° C<sup>-1</sup> x 1.126 °C] + [300 g x 4.18 J g<sup>-1</sup> °C<sup>-1</sup> x 1.126 °C]  
= 3.403 x 10<sup>3</sup> J

Mole of Mg =  $0.1375 \text{ g} / 24.3 \text{ g mol}^{-1}$ =  $5.658 \times 10^{-3} \text{ mol}$ 

 $5.658 \times 10^{-3} \approx 3.403 \times 10^{3} \text{ J}$ 1.0 mol = 601.0 kJ mol<sup>-1</sup>

$$\Delta H_c Mg = -601.0 \text{ kJ mol}^{-1} @ -6.010 x 10^2 \text{ kJ mol}^{-1}$$

(b) Based on th data given below:

| $\Delta H^{\circ}_{hydration} Na^{+}$ | $= -390 \text{ kJ mol}^{-1}$ |
|---------------------------------------|------------------------------|
| $\Delta H^{\circ}_{hydration} Cl^{-}$ | $= -380 \text{ kJ mol}^{-1}$ |
| $\Delta H^{\circ}_{solution}$ NaCl    | $= + 6 \text{ kJ mol}^{-1}$  |

i. Construct an energy cycle diagram to represent the dissolution of NaCl.

ii. Calculate the lattice energy of NaCl.  
Lattice energy = 
$$\Delta^{\circ} \mathbf{H}_{hydration} \mathbf{Na}^{+} + \Delta^{\circ} \mathbf{H}_{hydration} \mathbf{CI}^{-} + \Delta \mathbf{H}^{\circ}_{solution} \mathbf{NaCl}$$
  
= [- 390 + (- 380) + (- 6)] kJ mol<sup>-1</sup>  
= -776 kJ mol<sup>-1</sup>

[5 marks]

#### ANSWER SCHEME UPS2007/2008 SK027

4 (a) Combustion of  $C_8H_{18}(l)$  forms water and carbon dioxide. Using the data given, calculate the amount of heat released if 100.0 g of  $C_8H_{18}(l)$  is completely burnt.

| $\mathrm{H}_{2}\left(g\right) \ + \ \frac{1}{2} \mathrm{O}_{2}\left(g\right) \ \rightarrow \ $ | $H_2O(l)$                     | $\Delta H_1 = -286 \text{ kJ/mol}$ | (1) |           |
|------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|-----|-----------|
| $C(s) + O_2(g) \rightarrow C$                                                                  | $\mathrm{O}_{2}\left(g ight)$ | $\Delta H_2 = -392 \text{ kJ/mol}$ | (2) |           |
| $8 \operatorname{C}(s) + 9 \operatorname{H}_2(g) \rightarrow$                                  | $C_{8}H_{18}(l)$              | $\Delta H_3 = -250 \text{ kJ/mol}$ | (3) |           |
|                                                                                                |                               |                                    |     | [5 marks] |
|                                                                                                |                               |                                    |     |           |

Eq. (1)  $x 9 : 9 H_2(g) + 9/2 O_2(g) \rightarrow 9 H_2O(l)$  $\Delta H_1 = (-286 x 9) kJ$ Eq. (2)  $x 8 : 8 C(s) + 8 O_2(g) \rightarrow 8 CO_2(g)$  $\Delta H_2 = (-392 x 8) kJ$ Rev Eq. (3) :  $C_8H_{18}(l) \rightarrow 8 C(s) + 9 H_2(g)$  $\Delta H_3 = +250 kJ$ 

$$C_8H_{18}(l) + 25/2 O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O(l) \Delta H^{\circ}c = -5460 \text{ kJ mol}^{-1}$$

$$\Delta H^{\circ}c = \Delta H_{1} + \Delta H_{2} + \Delta H_{3}$$
  
= -2574 + (-3136) + (+250)  
= -5460 kJ/mol

No of mole of  $C_8H_{18} = 100 \text{ g} / 114 \text{ g mol}^{-1} = 0.8772 \text{ mol}$ 

The amount of heat released = -5460 kJ/mol x 0.8772 mol= -4789.51 kJ=  $-4790 \text{ kJ} @ 4.790 x 10^3 \text{ kJ}$ 

(b) The Born-Haber cycle for magnesium oxide is shown below:



i. Name the enthalpy change for  $\Delta H_1$ ,  $\Delta H_3$  and  $\Delta H_7$ .  $\Delta H_1$  – enthalpy of atomisation @ sublimation of magnesium  $\Delta H_3$  – second ionisation energy of magnesium  $\Delta H_7$  – lattice energy of magnesium oxide

[3 marks]

ii. Compare the lattice energy of magnesium oxide, MgO and barium oxide, BaO. Give reason.

The lattice energy of MgO is higher/more electronegative than that of BaO. The size og  $Mg^{2+}$  is smaller than  $Ba^{2+}$ . @ attractive forces between  $Mg^{2+}$  and  $O^{2-}$  are stronger than those between  $Ba^{2+}$  and  $O^{2-}$ .

[2 marks]

## ANSWER SCHEME UPS 2008/2009 SK027

5 (a) A calorimeter contains 400.0 mL of water at 25°C. If 600.0 mL of water at 60 °C is added to it, determine the final temperature. Assume that the heat absorbed by the calorimeter is negligible.

Heat released by adding water = heat absorbed by adding water  $m_1C_1 \triangle T_1 = m_2C_2 \triangle T_2$ 

 $\begin{array}{l} \Delta \mathbf{T}_{1} \ = \ 60 \ ^{\circ}\mathbf{C} - \mathbf{Y} \\ \Delta \mathbf{T}_{2} \ = \ \mathbf{Y} - \mathbf{25} \ ^{\circ}\mathbf{C} \\ \therefore \ 600 \ x \ 4.18 \ x \ (60 \ ^{\circ}\mathbf{C} - \mathbf{Y}) \ = \ 400 \ x \ 4.18 \ x \ (\mathbf{Y} - \mathbf{25} \ ^{\circ}\mathbf{C}) \\ \mathbf{Y} \ = \ 46 \ ^{\circ}\mathbf{C} \ @ \ 46.0 \ ^{\circ}\mathbf{C} \end{array}$ [4 marks]

(b) The combustion of a sample of aluminium produces 0.25 mol of aluminium oxide and releases 419.0 kJ of heat at standard conditions.

Al (s) +  $\frac{3}{4}$  O<sub>2</sub> (g)  $\rightarrow$   $\frac{1}{2}$  Al<sub>2</sub>O<sub>3</sub> (s)

- i. Define the standard enthalpy of combustion. The amount of heat released when 1 mole of substance is completely burnt in excess of oxygen at standard conditions (25 °C and 1 atm).
- ii. Calculate the standard enthalpy of combustion of aluminium.

0.25 mol Al<sub>2</sub>O<sub>3</sub> ≈ 416 kJ 0.5 mol Al<sub>2</sub>O<sub>3</sub> ≈ ? kJ  $\Delta H^{\circ}_{c} Al = 0.5 x 419 / 0.25 = -838 \text{ kJ mol}^{-1} @ -838.0 \text{ kJ mol}^{-1}$  iii. Determine the enthalpy of formation of  $Al_2O_3$  and write its thermochemical equation.

$$\Delta H^{\circ}_{f} Al_{2}O_{3} = \Delta H^{\circ}_{c} Al$$

$$= 2 x (-838)$$

$$= -1676 \text{ kJ mol}^{-1}$$

$$2 Al (s) + 3/2 O_{2} (g) \rightarrow Al_{2}O_{3} (s) \qquad \Delta H^{\circ} = -1676 \text{ kJ mol}^{-1}$$
[6 marks]

## **UPS 2009/2010 SK027**

6 (a) Define standard enthalpy of combustion.
 Heat released when 1 mole of substance/compound is completely combusted in excess oxygen at standard condition (25 °C and 1 atm).

[1 marks]

(b) Propane,  $C_3H_8$ , is a hydrocarbon gas that is commonly used as a fuel for cooking. The standard enthalpy of combustion is  $-220.1 \text{ kJ mol}^{-1}$ .

Write a balanced equation for the complete combustion of propane gas. Assuming all of the heat evolved in burning 10.0 g of propane is transferred to 8.0 kg of water, calculate the increase in temperature of the water.

C<sub>3</sub>H<sub>8</sub> (g) + 5 O<sub>2</sub> (g) → 3 CO<sub>2</sub> (g) + 4 H<sub>2</sub>O (l) ΔH°<sub>c</sub> = -220.1 kJ mol<sup>-1</sup> Mr C<sub>3</sub>H<sub>8</sub> = 44 g mol<sup>-1</sup> 44 of C<sub>3</sub>H<sub>8</sub> releases 220.1 kJ 10 g @ 0.227 mol of C<sub>3</sub>H<sub>8</sub> releases 50.02 kJ Heat released = mcΔT -50.02 x 10<sup>3</sup> J = 8000 g x 4.18 J g<sup>-1</sup> °C<sup>-1</sup> x ΔT ΔT = 1.5 °C @ 1.50 °C

[5 marks]

(c) When phosphorus is reacted with an excess of oxygen, tetraphosphorus decaoxide,  $P_4O_{10}$ , is formed as shown in the following reaction:

 $4 P(s) + 5 O_2(g) \rightarrow P_4 O_{10}(s)$ 

Using the information below, calculate the heat of formation,  $\Delta H^{\circ}_{f}$ , of P<sub>4</sub>O<sub>10</sub>.

| $4 \mathbf{P}(\mathbf{s}) + 5 \mathbf{O}_2(\mathbf{g}) \rightarrow \mathbf{P}_4 \mathbf{O}_{10}(\mathbf{s})$                                                                                                                                                                                                                                                                              | A TT 0                                                                                                                          | 2270 l. I                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Eq (1) x 5: 10 PCl <sub>3</sub> (l) + 5 O <sub>2</sub> (g) $\rightarrow$ 10 POCl <sub>3</sub> (l)Rev. eq (2): 10 POCl <sub>3</sub> (l) $\rightarrow$ P <sub>4</sub> O <sub>10</sub> (s) + 6 PCl <sub>5</sub> (s)Eq (3) x 5: 10 P (s) + 15 Cl <sub>2</sub> (g) $\rightarrow$ 10 PCl <sub>3</sub> (l)Rev. eq (4) x 3: 6 PCl <sub>5</sub> (s) $\rightarrow$ 6 P (s) + 15 Cl <sub>2</sub> (g) | $\Delta \mathbf{H}^{\circ} = -$ $\Delta \mathbf{H}^{\circ} = -$ $\Delta \mathbf{H}^{\circ} = -$ $\Delta \mathbf{H}^{\circ} = -$ | – 2935 kJ<br>– 419 kJ<br>– 3430 kJ<br>+ 2676 kJ              |
| $2 \text{ PCl}_{3}(l) + \text{O}_{2}(g) \rightarrow 2 \text{ POCl}_{3}(l) P_{4}\text{O}_{10}(s) \ 6 \text{ PCl}_{5}(s) \rightarrow 10 \text{ POCl}_{3}(l) 2 \text{ P}(s) + 3 \text{ Cl}_{2}(g) \rightarrow 2 \text{ PCl}_{3}(l) 2 \text{ P}(s) + 5 \text{ Cl}_{2}(g) \rightarrow 2 \text{ PCl}_{5}(s)$                                                                                    | $\Delta H^{\circ} = -$<br>$\Delta H^{\circ} = -$<br>$\Delta H^{\circ} = -$<br>$\Delta H^{\circ} = -$                            | - 587 kJ (1)<br>- 419 kJ (2)<br>- 686 kJ (3)<br>- 892 kJ (4) |
|                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |                                                              |

ANSWER SCHEME UPS 2009/2010 TS027

7 (a) Define standard enthalpy of formation. Heat change (absorbed or released) when 1 mole of compound is formed from its elements under standard conditions (25 °C and 1 atm).

[1 mark]

 $\Delta \mathbf{H}^{\circ}_{f} = -3270 \text{ kJ mol}^{-1}$ 

[4 marks]

(b) Elements *X* and *Y* form an ionic compound *XY*. The enthalpy changes involved in the formation of this compound under standard conditions are as follows:

| $X(s) \rightarrow X(g)$                                                                            | $\Delta H^{\circ} = + 82 \text{ kJ}$ |
|----------------------------------------------------------------------------------------------------|--------------------------------------|
| $\frac{1}{2} Y_2(g) \rightarrow Y(g)$                                                              | $\Delta H^{\circ} = +118 \text{ kJ}$ |
| $X(g) \rightarrow X^+(g) + e$                                                                      | $\Delta H^\circ = +426 \text{ kJ}$   |
| $Y(g) + e \rightarrow Y(g)$                                                                        | $\Delta H^\circ = -333 \text{ kJ}$   |
| $\boldsymbol{X}(s) + \frac{1}{2} \boldsymbol{Y}_2(g) \rightarrow \boldsymbol{X} \boldsymbol{Y}(s)$ | $\Delta H^{\circ} = -441 \text{ kJ}$ |

i. Write an equation that represents the lattice energy of compound XY.  $X^{+}(g) + Y^{-}(g) \rightarrow XY(s)$  ii. Calculate the value of the lattice energy by using energy cycle method.

[6 marks]



$$(+82) + (+426) + (+118) + (-333) + \Delta H_{LE} = -411 \text{ kJ}$$
  
 $\Delta H_{LE} = -734 \text{ kJ mol}^{-1}$ 

(c) An amount of 1.23 kJ of heat is supplied to 70.0 g of water at a temperature of 28.0 °C. Calculate the final temperature of the water.

$$Q = mc\Delta T$$
  
1.23 kJ = 70.0 g x 4.18 J g<sup>-1</sup> °C<sup>-1</sup> x (T<sub>final</sub> - T<sub>initial</sub>) °C  
1.23 kJ = 70.0 g x 4.18 J g<sup>-1</sup> °C<sup>-1</sup> x (T<sub>final</sub> - 28) °C  
T<sub>final</sub> = 32.2 °C  
[3 marks]

#### ANSWER SCHEME UPS 2010/2011 SK027

8 (a) A matriculation student carried out an experiment involving a reaction between an acid and a base as shown in the following reaction:

 $CH_3COOH(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + H_2O(l)$ 

In this experiment, 20.0 cm<sup>3</sup> of 2.0 M of NaOH solution was added to  $30.0 \text{ cm}^3$  of 1.0 M of CH<sub>3</sub>COOH solution in a plastic cup. A maximum rise of  $5.8^{\circ}$ C in temperature was recorded.

[Heat capacity of the plastic cup =  $37.30 \text{ J} \circ \text{C}^{-1}$ . Assume density of solution = density of water]

i. Name the enthalpy for this reaction. **Enthalpy of neutralization** 

ii. Calculate the standard enthalpy for this reaction.

Mol NaOH = 2.0 x 20.0 / 1000 = 0.04 mol Mol CH<sub>3</sub>COOH = 1.0 x 30.0 / 1000 = 0.03 mol Limiting reactant is CH<sub>3</sub>COOH Mol H<sub>2</sub>O = mol CH<sub>3</sub>COOH = 0.03 mol Assume volume of water = volume of solution Total volume = 20.0 cm<sup>3</sup> + 30.0 cm<sup>3</sup> = 50.0 cm<sup>3</sup> Heat released = mc $\Delta$ T + C $\Delta$ T = (50.0 x 4.18 x 5.8) + (37.3 x 5.8) = 1428.54 J @ 1.4285 kJ  $\Delta$ H°<sub>neutralisation</sub> = 1.4285 / 0.03 = -47.62 kJ mol<sup>-1</sup>

[6 marks]

(b) i. Construct a Born-Haber cycle for the formation of magnesium fluoride,  $MgF_2$ , by using the data below:

|                                                      | 1                           |
|------------------------------------------------------|-----------------------------|
| Enthalpy of atomisation of magnesium                 | $+ 148 \text{ kJ mol}^{-1}$ |
| Enthalpy of atomisation of fluorine                  | + 159 kJ mol <sup>-1</sup>  |
| First ionisation energy of magnesium                 | + 738 kJ mol <sup>-1</sup>  |
| Second ionisation energy of magnesium                | + 1450 kJ mol <sup>-1</sup> |
| Electron affinity of fluorine                        | – 328 kJ mol <sup>-1</sup>  |
| Standard enthalpy of formation of magnesium fluoride | – 1123 kJ mol <sup>-1</sup> |

ii. Based on the Born-Haber cycle, determine the lattice energy of magnesium fluoride.

 $\Delta \mathbf{H}^{\circ}_{LE} = -1123 \cdot [148 + (159 x 2) + 738 + 1450 + (-328 x 2)]$ = -3121 kJ mol<sup>-1</sup>

[4 marks]

# ANSWER SCHEME UPS 2010/2011 TK025

9 (a) Use the data in the table below to answer the following questions:

| Enthalpy change                      | $\Delta H (kJ/mol)$ |
|--------------------------------------|---------------------|
| Atomisation energy of iron           | + 150               |
| First ionisation energy of iron      | + 736               |
| Second ionisation energy of iron     | + 1450              |
| Atomisation energy of chlorine       | + 121               |
| Electron affinity of chlorine        | - 364               |
| Lattice energy of iron (II) chlorine | - 2493              |

(i) Define enthalpy of formation.

Heat change when 1 mole of a compound is formed from its elements in their stable states at standard conditions.

[1 mark]

(ii) Sketch the Born-Haber cycle with appropriate enthalpy values for iron (II) chloride.



[6 marks]

(iii) Calculate the enthalpy of formation for iron (II) chloride.

$$\Delta \mathbf{H}_f = \mathbf{150} + \mathbf{736} + \mathbf{1450} + (\mathbf{121} \times \mathbf{2}) + (-\mathbf{364} \times \mathbf{2}) + (-\mathbf{2493}) \\ = -\mathbf{643} \text{ kJ mol}^{-1} \quad @ \quad -\mathbf{643.0} \text{ kJ mol}^{-1}$$

(b) Which compound between KCl or RbCl has larger lattice energy? Explain.
 KCl. The size of K<sup>+</sup> is smaller than Rb<sup>+</sup>. The electrostatic attraction between K<sup>+</sup> and Cl<sup>-</sup> is stronger than that of Rb<sup>+</sup> and Cl<sup>-</sup>.

[2 marks]

[1 mark]

10. (a) Define Hess's Law. **The total enthalpy change for a reaction is the same whether it occurs in one step or in many steps.** 

[1 mark]

- (b) Lattice energy of potassium chloride, KCl is  $+ 4 \text{ kJ mol}^{-1}$  and its enthalpy of hydration is  $686 \text{ kJ mol}^{-1}$ .
  - i. Write the thermochemical equation for the hydration process of potassium chloride.  $\mathbf{K}^{+}(g) + \mathbf{Cl}^{-}(g) \rightarrow \mathbf{K}^{+}(aq) + \mathbf{Cl}^{-}(aq) \quad \Delta \mathbf{H}^{\circ}_{hyd} = -686 \text{ kJ mol}^{-1}$ [2 marks]
  - ii. Calculate the enthalpy of solution for the salt.

[3 marks]

## Method 1:

$$K^{+}(g) + Cl^{-}(g) \rightarrow K^{+}(aq) + Cl^{-}(aq) \qquad \Delta H = -686 \text{ kJ mol}^{-1}$$

$$KCl(s) + K^{+}(g) + Cl^{-}(g) \qquad \Delta H = +4 \text{ kJ mol}^{-1}$$

$$KCl(s) \rightarrow K^{+}(aq) + Cl^{-}(aq) \qquad \Delta H = -682 \text{ kJ mol}^{-1}$$

#### Method 2:

$$-686 \text{ kJ mol}^{-1}$$

$$K^{+}(g) + Cl^{-}(g) \longrightarrow K^{+}(aq) + Cl^{-}(aq)$$

$$\downarrow +4 \text{ kJ mol}^{-1}$$

$$\Delta H_{soln} = ?$$

$$KCl(s)$$

 $\Delta \mathbf{H}_{soln} = \Delta \mathbf{H}_{hyd} + \Delta \mathbf{H}_{LE}$ = (-686 + 4) kJ mol<sup>-1</sup> = -682 kJ mol<sup>-1</sup> (c) Determine the enthalpy change for the oxidation of ammonia.

$$4 \operatorname{NH}_3(g) + 5 \operatorname{O}_2(g) \rightarrow 4 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(g)$$

Given;

| ${f N_2}\left(g ight)\ {f N_2}\left(g ight)\ {f 2}\ {f H_2}\left(g ight)$ | $\begin{array}{rcl} + & 3 \operatorname{H}_{2}(g) & \rightarrow & 2 \operatorname{NH}_{3}(g) \\ + & \operatorname{O}_{2}(g) & \rightarrow & 2 \operatorname{NO}(g) \\ ) & + & \operatorname{O}_{2}(g) & \rightarrow & 2 \operatorname{H}_{2}\operatorname{O}(g) \end{array}$ | $\Delta H = -99.22 \text{ kJ} (1)$<br>$\Delta H = +180.5 \text{ kJ} (2)$<br>$\Delta H = -571.6 \text{ kJ} (3)$ |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Rev. Eq (1) x<br>Eq (2) x 2<br>Eq (3) x 3                                 | $\begin{array}{rl} 2:4~\mathrm{NH}_3(g)\rightarrow2~\mathrm{N}_2(g)+6~\mathrm{H}_2(g)\\ :2~\mathrm{N}_2(g)+2~\mathrm{O}_2(g)\rightarrow4~\mathrm{NO}(g)\\ :6~\mathrm{H}_2(g)+3~\mathrm{O}_2(g)\rightarrow6~\mathrm{H}_2\mathrm{O}(g) \end{array}$                            | $\Delta H = + 198.44 \text{ kJ}$<br>$\Delta H = + 361.00 \text{ kJ}$<br>$\Delta H = - 1714.8 \text{ kJ}$       |
| $4 \text{ NH}_{3}(g) +$                                                   | $5 \operatorname{O}_2(g) \rightarrow 4 \operatorname{NO}(g) + 6 \operatorname{H}_2 \operatorname{O}(g)$                                                                                                                                                                      | $\Delta H = -1155.36 \text{ kJ}$ [4 marks]                                                                     |

# ANSWER SCHEME UPS 2011/2012 TK025

| 11 | (a) | i.   | What is calorimetry?                                                                                                                           |
|----|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     |      | Calorimetry is the measurement of a quantity of heat                                                                                           |
|    |     |      | [1 marks]                                                                                                                                      |
|    |     | ii.  | What is the basic principle of the simple calorimeter?                                                                                         |
|    |     |      | All the heat lost by a system is gained by its surrounding (or vice versa) @ heat released = heat absorbed.                                    |
|    |     |      | [1 marks]                                                                                                                                      |
|    |     | iii. | A 1.50 g sample of an alloy is heated to 99.0 °C. It is then dropped into 28.0 g                                                               |
|    |     |      | water in a calorimeter. The water temperature rises from 20.00 °C to 22.25°C.                                                                  |
|    |     |      | Calculate the specific heat capacity of the alloy.                                                                                             |
|    |     |      | heat released = heat absorbed                                                                                                                  |
|    |     |      | $(\mathbf{mc}\Delta \mathbf{T})_{alloy} = (\mathbf{mc}\Delta \mathbf{T})_{water}$                                                              |
|    |     |      | $1.5 \text{ g } x \text{ c } x 76.75 ^{\circ}\text{C} = 28.0 \text{ g } x 4.18 \text{ J g}^{-1} ^{\circ}\text{C}^{-1} x 2.25 ^{\circ}\text{C}$ |
|    |     |      | $c = 2.29 J g^{-1} \circ C^{-1}$                                                                                                               |
|    |     |      | [3 marks]                                                                                                                                      |
|    |     |      |                                                                                                                                                |
|    |     |      |                                                                                                                                                |

(b) FIGURE below is the Born-Haber cycle diagram for the formation of potassium bromide, KBr crystals.



(i) Name  $\Delta H_2$  and  $\Delta H_5$ .  $\Delta H_2$  = enthalpy of atomization of potassium  $\Delta H_5$  = electron affinity of bromine

[2 marks]

(ii) Write the appropriate products for X.  $X = \mathbf{K}^{+}(g) + \frac{1}{2} \mathbf{Br}_{2}(l)$ 

[1 marks]

(iii) What will happen to value of ∆H<sub>3</sub> if potassium (K) metal in the above cycle is replaced by sodium (Na) metal? Explain.
∆H<sub>3</sub> for Na is larger.
Na is a smaller atom with the valence shell closer to the nucleus and hence bound more tightly.

[2 marks]

- 12 (a) Define
  - (i) Standard enthalpy of formation.
     Heat change when 1 mole of compound is formed from its elements under standard condition (25 °C and 1 atm).
  - (ii) Standard enthalpy of combustion.
     Heat released when 1 mole of a substance is burnt in oxygen under standard condition (25 °C and 1 atm).

[2 mark]

(b) Standard enthalpy of combustion of ethanol, CH<sub>3</sub>CH<sub>2</sub>OH is 1386 kJ mol<sup>-1</sup>. Write the thermochemical equation to represent the statement. State whether the reaction is exothermic or endothermic.

CH<sub>3</sub>CH<sub>2</sub>OH (l) + 3 O<sub>2</sub> (g)  $\rightarrow$  2 CO<sub>2</sub> (g) + 3 H<sub>2</sub>O (g)  $\Delta$ H° = -1386 kJ mol<sup>-1</sup> Exothemic reaction.

[2 marks]

- (c) Standard enthalpy of combustion for propane,  $CH_3CH_2CH_3$  is -2220 kJ mol<sup>-1</sup>.
  - (i) How much energy is released when 1.0 g of propene undergoes complete combustion?

Mr propane,  $C_3H_8 = 44.0 \text{ g mol}^{-1}$ 

$$\Delta H = 1.0 \ x \ 2220 \ / \ 44.0$$
  
= 50.45 kJ

[2 marks]

(ii) How much energy is released when 33.6 dm<sup>3</sup> of propane at STP is completely burnt?

At STP: 22.4 dm<sup>3</sup> is equivalent to 1 mol 33.6 dm<sup>3</sup> equal to 1.5 mol

$$\Delta H = 1.5 \ x \ 2220$$
  
= 3330 kJ

[2 marks]

(iii) How many grams of propane must be completely burnt in order to produce 100 kJ of heat?

2220 kJ  $\rightarrow$  1 mol 100 kJ  $\rightarrow$  (100/200) x 1.0 mol = 0.045 mol Mass of propane = 0.045 x 44 = 1.98 g

[2 marks]

# ANSWER SCHEME UPS 2011/2012 SK026

- 13 (a) Combustion of 1 mole of butane gas,  $C_4H_{10}$  involves 2874 kJ of heat.
  - i. Write a thermochemical equation for the combustion of butane.  $C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(l) \Delta H^\circ = -2874 \text{ kJ mol}^{-1}$

ii. Calculate the mass of butane that must be burnt in order to increase 1.56 °C of 1000 g water in a bomb calorimeter with a heat capacity of 958 J° C<sup>-1</sup>.

$$Q_{rxn} = C_c \Delta T + m_w c_w \Delta T$$
  
= 958 J°C (1.56 °C) + (1000 g)(4.18 Jg<sup>-1</sup>° C<sup>-1</sup>)(1.56 °C)  
= 8015.25 J  
= 8.02 kJ

[5 marks]

(b) i. Based on the data given in **TABLE 1**, construct an energy cycle diagram for dissolution of lithium chloride, LiCl.

| TABLE 1                      |                                                 |  |
|------------------------------|-------------------------------------------------|--|
| Process                      | Enthalpy of reaction<br>(kJ mol <sup>-1</sup> ) |  |
| Lattice energy of LiCl       | $\Delta H = -846$                               |  |
| Dissolution of LiCl          | $\Delta H = -77$                                |  |
| Hydration of Li <sup>+</sup> | $\Delta H = -510$                               |  |
| Hydration of Cl <sup>-</sup> | $\Delta H = -413$                               |  |



Which of these salts, LiCl or KCl, would have larger lattice energy? Explain.
 LiCl because Li<sup>+</sup> has smaller ionic radius than K<sup>+</sup>

[5 marks]

# ANSWER SCHEME UPS 2012/2013 TK025

14 (a) i. Define the standard enthalpy of combustion of ethanol, C<sub>2</sub>H<sub>5</sub>OH. **The heat released when 1 mol of ethanol is burned in excess oxygen under standard condition.**  ii. Using the following standard enthalpies of formation, calculate the standard enthalpy of combustion for ethanol.

| Compound                         | $\Delta \mathbf{H}^{o}_{f} (\mathbf{kJ mol}^{-1})$ |
|----------------------------------|----------------------------------------------------|
| C <sub>2</sub> H <sub>5</sub> OH | -277.8                                             |
| H <sub>2</sub> O (l)             | - 285.9                                            |
| $CO_{2}(g)$                      | - 393.5                                            |

| $\overline{\mathrm{C_2H_5OH}(l)\ +\ 3\mathrm{O}_2(g)\ \rightarrow\ 2\mathrm{CO}_2(g)\ +\ 3\mathrm{H_2O}(l)}$ | $\Delta H^{\circ}_{f} = -1366.9 \text{ kJ mol}^{-1}$ |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Reverse : $C_2H_5OH(l) \rightarrow 2C(s) + 3H_2(g) + \frac{1}{2}O_2(g)$                                      | $\Delta \mathbf{H} = + 277.8 \text{ kJ}$             |
| Eq (2) x 3: 3 H <sub>2</sub> (g) + $3/2$ O <sub>2</sub> (g) $\rightarrow$ 3 H <sub>2</sub> O (l)             | $\Delta \mathbf{H} = -857.7 \text{ kJ}$              |
| Eq (1) x 2: 2 C (s) + 2 O <sub>2</sub> (g) $\rightarrow$ 2 CO <sub>2</sub> (g)                               | $\Delta \mathbf{H} = -787.0 \text{ kJ}$              |
| $2 C (s) + 3 H_2 (g) + \frac{1}{2} O_2 (g) \rightarrow C_2 H_5 OH (l)$                                       | $\Delta \mathbf{H} = -277.8 \text{ kJ mol}^{-1} (3)$ |
| $\mathbf{H}_{2}(g) + \frac{1}{2} \mathbf{O}_{2}(g) \rightarrow \mathbf{H}_{2} \mathbf{O}(l)$                 | $\Delta \mathbf{H} = -285.9 \text{ kJ mol}^{-1} (2)$ |
| $\mathbf{C}(s) + \mathbf{O}_2(g) \rightarrow \mathbf{CO}_2(g)$                                               | $\Delta \mathbf{H} = -393.5 \text{ kJ mol}^{-1} (1)$ |
|                                                                                                              | 1                                                    |
| $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$                                                      | $\Delta \mathbf{H}^{o}_{f} = x \text{ kJ mol}^{-1}$  |

- iii. Write a thermochemical equation for the combustion of ethanol.  $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l) \Delta H^{\circ}_f = -1366.9 \text{ kJ mol}^{-1}$ [6 marks]
- (b) The following data is obtained from an experiment using ethanol as fuel to heat a sample of water.

| Mass of spirit lamp (g)         | 185.7 |
|---------------------------------|-------|
| Mass of spirit lamp + ethanol   | 187.6 |
| Volume of water heated $(cm^3)$ | 250.0 |

By using the enthalpy of combustion of ethanol obtained in (a) (ii), calculate the increase in temperature of the water.

[4 marks]

*Mass of ethanol* = 187.6 g - 185.7 g = 1.9 g

Moles of ethanol used =  $\frac{1.9}{46} = 0.0413$  mol

Quantity of heat released =  $0.0413 \times 1366.9 = 56.45 \text{ kJ}$ 

 $q = mc \Delta T$ 

$$\Delta T = \frac{56.45 \times 1000}{250 \times 4.18}$$
  
= 54.02 °C

15 (a) State Hess's Law.

[1 mark]

Hess's Law states that when reactants are converted to products, the overall change in enthalpy is the same whether the reaction takes place in a single step or in a series of steps.

(b) Phosphorus pentachloride, PCl<sub>5</sub> is prepared from PCl<sub>3</sub> and Cl<sub>2</sub>: PCl<sub>3</sub> (l) + Cl<sub>2</sub> (g)  $\rightarrow$  PCl<sub>5</sub> (s) (1) Use equation (2) and (3) to calculate  $\Delta$ Hrxn of equation (1): P<sub>4</sub> (s) + 6 Cl<sub>2</sub> (g)  $\rightarrow$  4 PCl<sub>3</sub> (l)  $\Delta$ H = -1280 kJ (2) P<sub>4</sub> (s) + 10 Cl<sub>2</sub> (g)  $\rightarrow$  4 PCl<sub>5</sub> (l)  $\Delta$ H = -1774 kJ (3) [4 marks] Rev Eq (2) x <sup>1</sup>/<sub>4</sub> : PCl<sub>3</sub> (l)  $\rightarrow$  <sup>1</sup>/<sub>4</sub> P<sub>4</sub> (s) + 3/2 Cl<sub>2</sub> (g)  $\Delta$ H = + 320 kJ Eq (3) x <sup>1</sup>/<sub>4</sub> : <sup>1</sup>/<sub>4</sub> P<sub>4</sub> (s) + 5/2 Cl<sub>2</sub> (g)  $\rightarrow$  PCl<sub>5</sub> (l)  $\Delta$ H = -443.5 kJ

$$PCl_3(l) + Cl_2(g) \rightarrow PCl_5(s) \qquad \Delta H = -123.5 \text{ kJ}$$

(c) The Born-Haber cycle for calcium fluoride is shown below:

i. Name the enthalpy change for  $\Delta H_1$ ,  $\Delta H_3$  and  $\Delta H_5$ .  $\Delta H_1 =$  enthalpy of atomization of calcium  $\Delta H_3 =$  second ionization energy of calcium  $\Delta H_5 =$  electron affinity of fluorine ii. Compare the lattice energy of calcium chloride and calcium fluoride. Give your reason.

Lattice energy of  $CaF_2$  is larger than lattice energy of  $CaCl_2$  because the ionic radius of F is smaller than Cl, so interionic distance of  $CaF_2$  is smaller.

[5 marks]