CHAPTER 10.3: FACTORS AFFECTING REACTION RATE

Objectives:

- Explain the following effects on the reaction rate
 - Temperature change
 - Maxwell-Boltzman distribution curve
 - Catalyst
 - Using energy profile diagram
 - Concentration or pressure change
 - Particle size
- Arrhenius Equation

Factor Affecting Reaction Rate

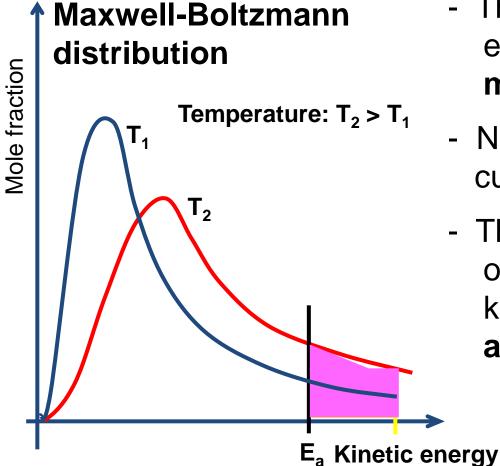
• CONCENTRATIONS OF REACTANTS:

Reaction rates generally **increase** as the **concentrations** of the reactants **are increased**.

• **TEMPERATURE**:

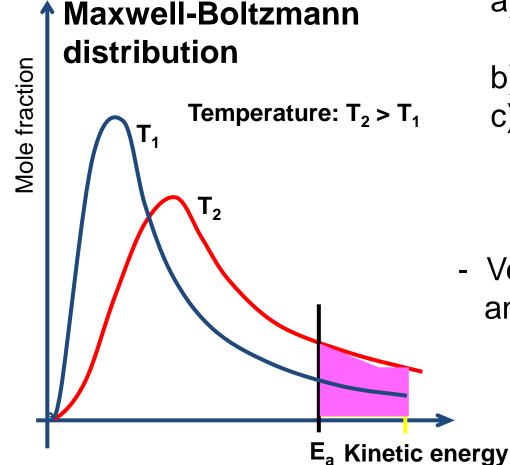
Reaction rates generally **increase** rapidly as the **temperature** is **increased**.

• CATALYSTS:


Catalysts **speed up** reactions.

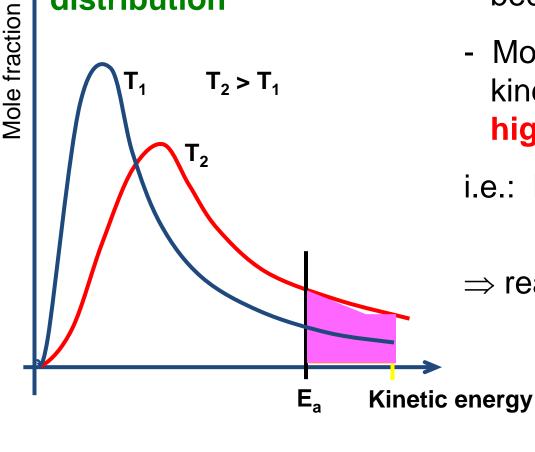
• **PARTICLE SIZE**:

The **rate increases** as **the smaller the size** of reacting particles.


- As temperature increases, kinetic energy of molecules increases
- More **collisions** occur in a given time
- Effective collisions will increase
- More molecules will have energy greater than activation energy, E_a
- Thus, the **rate of reaction** increases

Temperature ↑ Kinetic energy ↑ Frequency of collision ↑ Effective collision ↑ Rate of reaction ↑

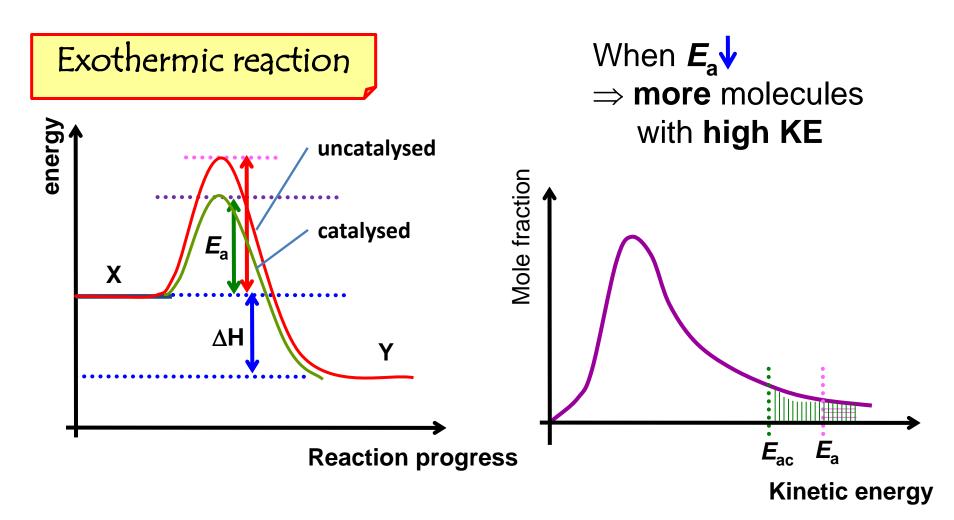
Features:


- The area under the curve equal to the total number of molecules
- No of molecules below **both** curve are the **same**
- The shaded area represent no of molecules possessing kinetic energy, KE ≥ activation energy, Ea

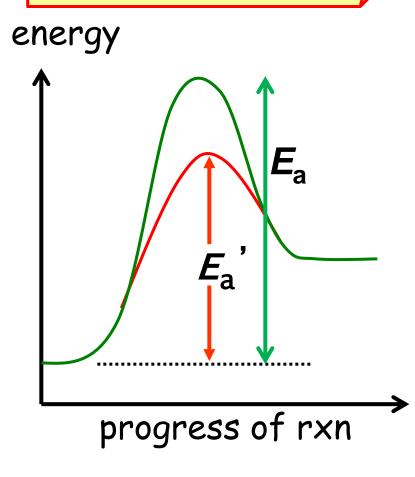
Features:

- At higher temperature (T₂),
 - a) the peak of the curve **moves** to the right
 - b) the curves flattens
 - c) more molecules with
 higher kinetic energy,
 KE (larger pink shaded area)
- Very few molecules have low and high KE

Maxwell-Boltzmann distribution


At higher temperature (T₂)

- Particles absorb energy and become more energetic
- More molecules posses kinetic energy equal to or higher than E_a
- i.e.: higher frequency of effective collision


 \Rightarrow reaction rate at T₂ increases

E_a: activation energy – minimum energy needed to initiate a chemical reaction

- A *catalyst* is a substance that increases the rate of a chemical reaction without itself being consumed.
- Addition of a catalyst increases the reaction rate by increasing the frequency of effective collision. That is by
 - Decreasing the E_a, and
 - Correct orientation

Endothermic reaction

In the presence of catalyst, \boldsymbol{E}_{a} is lower

- More molecules have KE equal to or higher than E_a
- the probability of effective collisions also <u>increases</u>
- thus, reaction rate <u>increases</u>.

Characteristics of Catalyst:

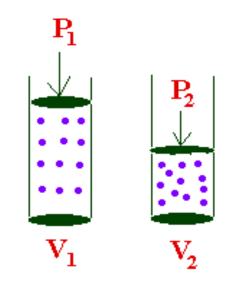
- They catalyze a **specific reaction**
- Catalysts **lower by the same amount** the activation energies of the forward and backward reactions of a reversible reaction.
- A catalyst neither **alters the position** of equilibrium nor **increases the yield of products**.
- Catalysts do not change the value of ∆H (enthalpy change) and K (equilibrium constant) but change the K (rate constant) rate law @ arrhenius eq
- The catalyst may be **changed physically** but the **mass** of catalyst is **unchanged** at the end of the reaction.
- It won't be denaturalised at high temperature.

Catalyst added Activation energy, Ea \downarrow Molecules posses kinetic energy **equal to or higher** than $E_a \uparrow$ Frequency of collision \uparrow Effective collision \uparrow Rate of reaction \uparrow

Effect of Concentration / Pressure

Reactant concentration / Pressure of gases

p V = n R T


$$p = (n/V) RT \implies p = c R T$$

 \Rightarrow pressure, $p \propto$ concentration, c

Explanation:

p or *c* ↑,

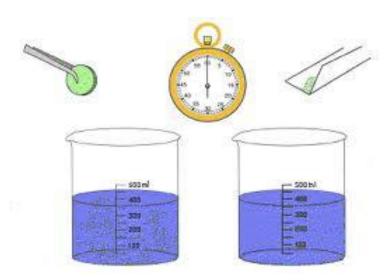
- particles are **closer** to each other
- More likely to collide (higher collision frequency)
- Probability of Effective collision increases
- More molecules with kinetic energy equal to or greater than E_a
- Reaction rate increases

Effect of Concentration / Pressure

However:,

Concentration change has No effect on **Zero-order** reaction

Example: $R \rightarrow$ product


Rate law: $r = k [R]^{\circ}$

Rate is independent of [R]

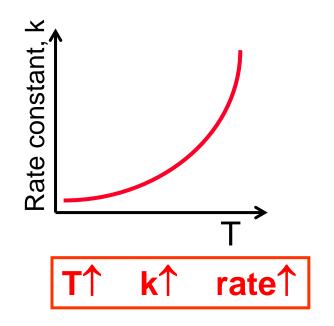
Effect of Concentration / Pressure

No of collision of molecule per unit volume ↑ Frequency of collision ↑ Effective collision ↑ Rate of reaction ↑

Effect of Particle Size

- The smaller the size of reacting particles, the <u>larger</u> the contact surface area (solid reactant).
- thus frequency of collision increases
- probability of <u>effective collision</u> also <u>increases</u>
- thus the reaction rate <u>increases</u>.

Effect of Particle Size


Size particle ↓ Total surface area ↑ Frequency of collision ↑ Effective collision ↑ Rate of reaction ↑

Arrhenius Equation

Where...

- \mathbf{k} = rate constant
- **A** = collision frequency factor
 - (is a measure of the probability of a favorable collision)
- e = natural log exponent
- E_a = activation energy for the reaction (kJ/mol)
- \mathbf{R} = universal gas constant (8.314 J mol⁻¹ K⁻¹)
- **T** = absolute temperature (T in Kelvin)

Arrhenius Equation

rate constant,
$$k = A e^{-E_a/RT}$$

$$T\uparrow, E_a \downarrow$$
Rate constant, k increases
Reaction rate increases
log $k = \log A - \frac{E_a}{2.303 RT}$
 $y = c + mx$

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$$

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$$

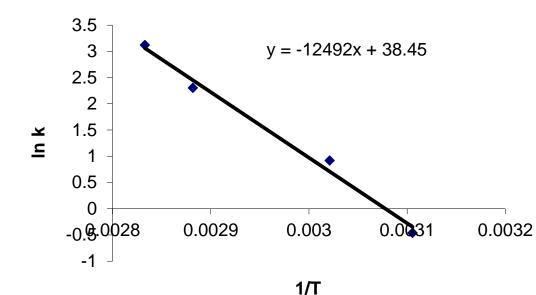
A and E_a are specific to a given reaction

Arrhenius Equation

Points to Remember

- Values of k are determined by temperature and catalyst
- Unit *A* = unit *k*
- Unit *T* = Kelvin, K
- Unit $E_{a} = J \mod^{-1}$
- $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$
- $r \propto k$

 $\frac{1}{k_2}$


Example 1:

The table below gives the rate constants, k for the reaction between potassium hydroxide and bromoethane at different temperatures.

<i>k</i> (M ⁻¹ s ⁻¹)	T (K)	
0.63	322	
2.50	331	
10.0	347	
22.6	353	

- a) Using a graphical method, calculate the activation energy (kJmol⁻¹) for this reaction.
- b) What is the overall order of reaction? Explain
- c) Calculate the initial rate of reaction at 330 K when the concentrations for both KOH and CH_3CH_2Br are 0.1M

1/T	0.0031	0.0030	0.0029	0.0028
ln k	-0.46	0.92	2.30	3.12

Plot In k vs 1/T

Solution:

a) Slope =
$$E_a/R$$

= 12492
 $E_a = 12492 \times 8.314$
= 1.04×10⁵ J mol⁻¹
= 104 kJ mol⁻¹

b) Second order,
unit of
$$k = M^{-1} s^{-1}$$

c)
$$\ln k = \frac{-E_a}{R} (\frac{1}{T}) + \ln A$$

 $\ln k = -12492(\frac{1}{330}) + 38.45$
 $k = 1.81 \text{ M}^{-1} \text{ s}^{-1}$

Rate = k [KOH][CH₃CH₂Br] = 1.81 x 0.1 x 0.1 = 1.81 x 10⁻² M s⁻¹

Example 2:

The decomposition of hydrogen iodide, $2 \text{ HI}(g) \rightarrow H_2(g) + I_2(g)$ has rate constants of 9.51 x 10⁻⁹ L mol⁻¹ s⁻¹ at 500 K and $1.10x10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$ at 600 K. Find E_a .

DATA:
$$k_1 = 9.51 \times 10^{-9} \text{ L mol}^{-1} \text{ s}^{-1}$$
 $T_1 = 500 \text{ K}$
 $k_2 = 1.10 \times 10^{-5} \text{ L mol}^{-1} \text{ s}^{-1}$ $T_2 = 600 \text{ K}$

SOLUTION:

$$\ln\frac{k_1}{k_2} = \frac{E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})$$

$$\ln \frac{9.51 \times 10^{-9}}{1.10 \times 10^{-5}} = \frac{E_a}{8.314} \left(\frac{1}{600} - \frac{1}{500} \right)$$
$$E_a = 1.76 \times 10^5 \text{ J mol}^{-1}$$
$$= 176 \text{ kJ mol}^{-1}$$

Check Point

- 1. For the reaction $NO_2Cl + NO \longrightarrow NO_2 + NOCl$, the frequency factor is $8.3 \times 10^8 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ and E_a is 28.9 kJ mol⁻¹. At 25°C the reaction is first-order with respect to NO_2Cl and first-order with respect to NO, what is the rate constant for the reaction. <7.13 ×10³ dm³ mol⁻¹s⁻¹>
- 2. The rate constant for the reaction $C_4H_8(g) \longrightarrow 2C_2H_4(g)$ is 3.2×10^{-2} s⁻¹ at 527°C. Calculate the rate constant at 577°C if the activation energy for the reaction is 260 kJ mol⁻¹.

<3.2 x 10⁻¹ s⁻¹>

Check Point

- 3. In the presence of platinum as a catalyst, hydrogen iodide decomposes to form hydrogen and iodine. The activation energy for this reaction is 58 kJ mol⁻¹. Calculate the ratio of the rate constant at 30°C and 20°C. $\frac{k_1}{k_2} = 0.46$
- 4. Hydrogen iodide decomposes on heating according to the equation ; $2HI(g) \longrightarrow H_2(g) + I_2(g)$

At 227°C, the rate constant of the reaction is 5.71×10⁻⁷ dm³ mol⁻¹ min⁻¹. At 327°C, the rate constant is 6.6×10⁻⁴ dm³ mol⁻¹ min⁻¹.

a) Calculate the activation energy tor this reaction <176 kJ/mol>

b) The activation energy of a certain reaction is 148 kJ mol⁻¹. How many times does the rate of reaction increases when the temperature changes from 37°C to 47°C? <6X>

Check Point

5. The results of the decomposition of N_2O_5 at two different temperature were recorded as;

Temperature(K)rate constant, k (s-1)298 1.74×10^{-5} 308 6.61×10^{-5}

- a) Base on the unit of the rate constant, k, determine the order of the reaction. <1st>
- b) Find the value of E_a and A for the reaction <102 kJ mol⁻¹>
- c) What would happen to the reaction if a catalyst were added? <rate increases>
- d) How does a catalyst work?
- e) By using the Maxwell-Boltzmann distribution curves, explain the effect of a catalyst on a particular reaction?

- To speed up a chemical reaction, one should
 - increase the concentrations/partial pressures of reactant
 - increase the temperature
 - add catalyst