
CHAPTER 10: REACTION KINETICS

What is Reaction Kinetics?

The branch of chemistry that deals with the rate of chemical reaction, the factors that affect these rates, and the reaction mechanisms by which reactions occur.

- Chemical Reactions:
 - some are very fast (explosion of a firecracker)
 very slow (rusting)
 - Eg: Neutralisation, precipitation reaction, rusting nail or food going bad

Chapter 10 Reaction Kinetics

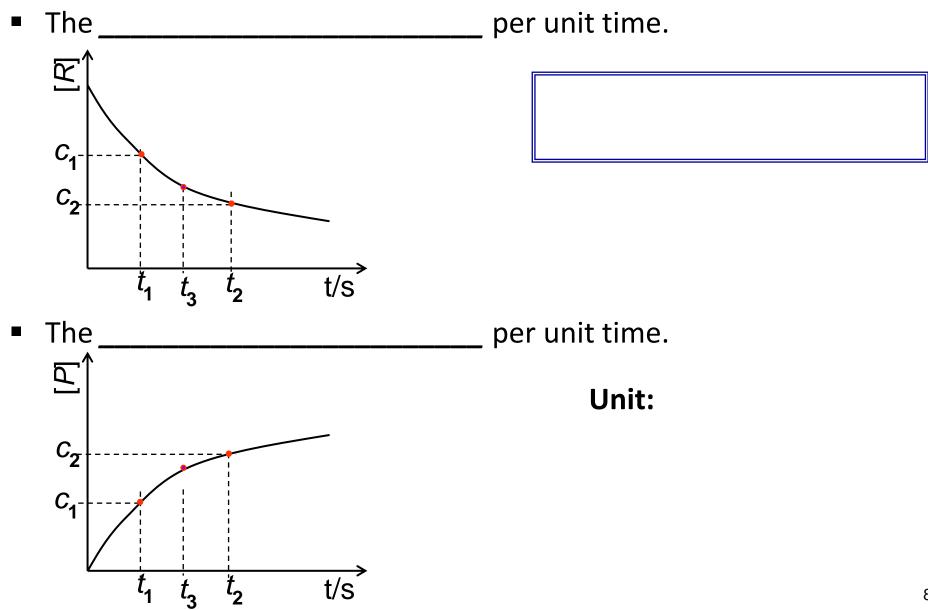
10.1 Reaction Rate
10.2 Collision Theory & Transition State Theory
10.3 Factors Affecting Reaction Rate

10.1 : REACTION RATE

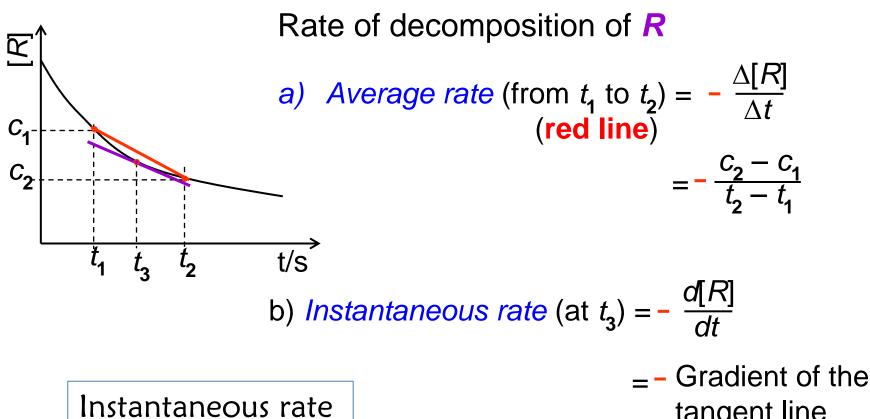
Objectives:

Define 'reaction rate'.

 Write the expression for the average rate, the instantaneous rate and the differential rate equation

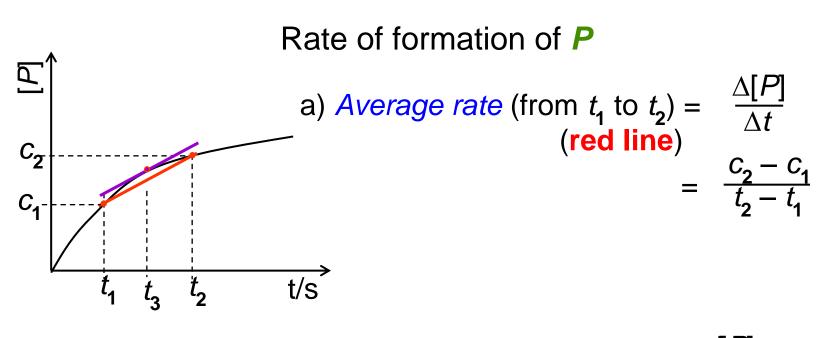

 Calculate the rate of formation of a product (or the rate of disappearance of a reactant)

- For a chemical reaction, *reactant* → *product*, the rate of reaction can be defined in two ways:
 - a) The decrease in reactant concentration, [A], per unit time
 - b) The increase in product concentration, [B], per unit time


Reaction rate – the change in concentration of a reactant or a product with time (Ms⁻¹)

Reaction rate, r = Change in concentration of substance Time taken

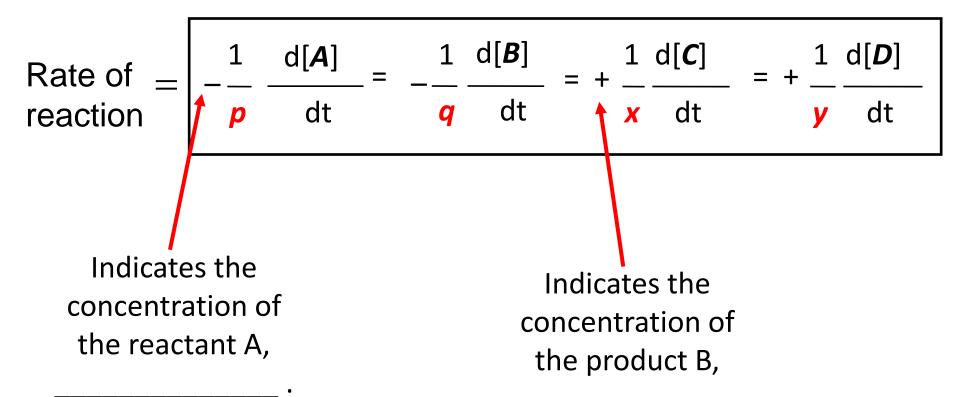
> The shorter time, the faster the reaction



 $aR \rightarrow bP$

tangent line (**purple line**)

 $aR \rightarrow bP$


b) Instantaneous rate (at t_3) = $\frac{d[P]}{dt}$

Instantaneous rate = Gradient of the tangent line
 (purple line)

Differential Rate Equation

 $p A + q B \rightarrow x C + y D$

the differential rate equation for the above reaction is:

Differential Rate Equation

 $p A + q B \rightarrow x C + y D$

the differential rate equation for the above reaction is:

Rate of $=$	_ 1	d[A]	d[A] _	1	d[B] = +		1 d[C]		= +	1	1 d[D]	
reaction	p	dt	-	q	dt		X	dt		У	dt	

Note:

p, q, x and y are the stoichiometric coefficients

 $-\frac{d[A]}{dt} \text{ and } -\frac{d[B]}{dt} \quad \text{are the } \qquad \text{of } A \text{ and } B$ $\frac{d[C]}{dt} \text{ and } \frac{d[D]}{dt} \quad \text{are the } \qquad \text{of } C \text{ and } D$

Differential Rate Equation

Example 1:

Equation for formation of NH₃,

```
N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)
```

The differential rate equation is;

Rate =

The equation means that the rate of disappearance of N_2 is 1/3 the rate of disappearance of H_2 and $\frac{1}{2}$ the rate of formation of NH_3 .

Example 2:

Consider the reaction, $2HI \rightarrow H_2 + I_2$,

determine the rate of disappearance of HI when the rate of I_2 formation is 1.8 x 10⁻⁶ M s⁻¹.

Solution 2:

Rate =

Rate of disappearance of HI =

Check Point

1) Because it has a nonpolluting product (water vapour), hydrogen gas is used for fuel aboard the space shuttle and may be used by Earth-bound engines in the near future.

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$$

- a) Express the rate in terms of changes in $[H_2]$, $[O_2]$ and $[H_2O]$ with time.
- b) When $[O_2]$ is decreasing at 0.23 mol L⁻¹ s⁻¹, at what rate is $[H_2O]$ increasing?

<0.46 M s⁻¹ >

Check Point

2) Consider the reaction,

 $NO(g) + O_2(g) \rightarrow 2NO_2(g).$

Suppose that at a particular moment during the reaction nitric oxide (NO) is reacting at the rate of 0.066 M s⁻¹.

- a) At what rate is NO₂ being formed?
- b) At what rate is molecular oxygen reacting?
- 3) Butane, C_4H_{10} burns in oxygen to give CO_2 and water. If the butane concentration is decreasing at a rate of 0.20 M s⁻¹, what is the rate at which the oxygen concentration is decreasing? What are the rates at which the CO_2 concentration is increasing?

<1.3;0.8>

SUMMARY

- Average rate: over a period of time
- Instantaneous rate: at a specific time
- Differential rate equation:

Rate of reaction $= -\frac{1}{p}\frac{d[A]}{dt} = -\frac{1}{q}\frac{d[B]}{dt} = \frac{1}{x}\frac{d[C]}{dt} = \frac{1}{y}\frac{d[D]}{dt}$