Objectives:

- Define rate law and reaction order
- Determine the reaction order with respect to each reactant
- Write the rate equations
- Specify the overall order of a reaction
- Find the values and the

units of rate constants

Rate Law / Rate Equation

The **RATE LAW**: expresses the relationship of the **rate** of a reaction to the **rate constant** and **concentrations** of reactants raised to some powers that appear in the rate equation.

$$a P + b Q \longrightarrow cS + dT$$

Rate,
$$r = k [P]^m [Q]^n$$

k: rate constant

[P], [Q]: concentrations of P and Q

m: reaction order with respect to reactant P

n: reaction order with respect to reactant Q

(*m* + *n*): overall reaction order

Rate Law / Rate Equation

Rate =
$$k[P]^{m}[Q]^{n}$$

 $k = A e^{-E_{a}/RT} [P]^{m}[Q]^{n}$

Reaction **rate** depends on:

- a) **Concentration** of reactants
- b) Temperature
- c) Catalyst

Reaction Order

Rate =
$$k[A]^m[B]^n$$

- The sum of the **powers** to which all reactant concentrations in the rate law are raised.
- Can only be determined experimentally
- May be integral (i.e., 1, 2, 3,...), zero, fractional, deimal or /and
 negative
- Reaction orders are NOT the stoichiometric coefficients in a balance chemical equation.

$$F_{2}(g) + 2CIO_{2}(g) \longrightarrow 2FCIO_{2}(g)$$

Rate = $k [F_{2}][CIO_{2}]^{1}$

Reaction Order

Example:

(a) Rate =
$$k [H_2] [Br_2]^{0.5}$$

(b) $r = k [CH_3CHO]^{3/2}$

Solution:

- a) The reaction order with respect to H_2 = The reaction order with respect to Br_2 = The overall reaction order =
- b) The reaction order with respect to $CH_3CHO =$ The overall reaction order =

Reaction Order

Example:

The decomposition of N₂O₅ at 45°C is first order. $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ i. Write an expression for the rate equation.

Rate,
$$r = k [N_2O_5]$$
 or $-\frac{d[N_2O_5]}{dt} = k [N_2O_5]$

ii. Calculate the rate constant if the concentration of N_2O_5 is 1.5x10⁻³ M at a dissociation rate of 8.6x10⁻⁷ M s⁻¹.

 $8.6 \times 10^{-7} = k (1.5 \times 10^{-3})$

Rate constant, $k = 5.7 \times 10^{-4} \text{ s}^{-1}$

Determining Reaction Order

5 methods:

- A) Initial Rate Method
- B) Unit of rate constant
- C) Statement
- D) Half-life Method

E) Linear Graph Method (Integrated rate equation)

is used when the data is reaction rate at several initial concentrations of reactant

Example:

Based on the data given below:

 $2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$

Exp.	Initial [NO]/M	Initial [Cl ₂]/M	Initial rate, M s ⁻¹
1	0.10	0.025	$2.0 imes 10^{-5}$
2	0.10	0.050	4.0 × 10 ⁻⁵
3	0.20	0.025	8.0 × 10 ⁻⁵

a) Deduce the reaction orders with respect to NO and Cl₂.

- b) Write the rate law of the reaction.
- c) Calculate the rate constant.

Compare 2 experiments in which the concentration of one reactant varies and the concentration of the other reactant(s) remains constant.

Compare exp. 1 with exp.2; [NO] is constant

Using rate equation, $Eq(1) \div Eq(2)$

Compare exp. 1 with exp.3; [Cl₂] is constant

Using rate equation, Eq(1) ÷ Eq(3)

- rate law = rate equation: rate, $r = k [A]^m [B]^n$
- Determining reaction order
 - ~ initial rate method

