12.0 ORGANIC CHEMISTRY

12.1 Introduction to Organic Chemistry

Learning Outcomes

- List the elements that made up organic compounds C, H, O, N, P, S and halogens.
- 2. State the ability of carbon to form 4 covalent bonds with other carbons or elements.
- 3. Differentiate between saturated and unsaturated organic compounds.
- 4. Give examples of organic compounds used in medicine, engineering, biotechnology and agriculture.

WHAT IS ORGANIC CHEMISTRY?

Organic chemistry is the chemistry of ____

- Generally, the components of organic compound are ______
- Organic compounds are compounds obtained from living organisms (plants & animals).
- Inorganic compounds are components of non-living matter (mineral, metal, etc).

Why study **ORGANIC CHEMISTRY?**

- Organic molecules as
 - constituents of living organisms
 - Information carriers
 - a food, supplementary, medicine etc.

Example:

METHANE, CH₄ – a component of natural gas

METHYL SALICYLIC ACID

- aspirin (a drug)

PENICILIN

- an antibiotic

Dichlorodipnenyltrichloroethane (DDT)

- a pesticde component

Organic Compound

- All organic compounds consist of _____
- Properties of carbon atom:
 - has _____
 - can form _____

Types of Bonding

SINGLE BOND

DOUBLE BOND

TRIPLE BOND

Uses of Organic Compound

Medicine	Antibiotics are used to fight bacterial and fungal infections
Engineering	Gasoline-as a fuel for internal combustion engines.
Biotechnology	Genetic information like DNA
Agriculture	DDT-as insectisides to kill harmful insects.

Hydrocarbons

SATURATED

Contains **only single** bonds (-C-C-)

Examples: alkanes, cycloalkanes

UNSATURATED

Contains **at least** one carbon-carbon **double** bond (-C=C-) or carbon-carbon **triple** bond (-C \equiv C-).

Example: alkenes, cycloalkenes, alkynes, cycloalkynes

12.2 Molecular and Structural Formulae

Learning Outcomes

- Define structural formula.
- Draw structural formula in the form of expanded, condensed and skeletal structures based on the molecular formula.
- Determine primary (1°), secondary (2°), tertiary (3°) and quaternary (4°) carbon.

Structural Formula

- Shows how the atoms in a molecule are bonded to each other.
- 3 types of structural formula:

Expanded Structure

- Shows every atom & type of covalent bond in the molecule.
- Not indicate the actual shapes of the molecules.

Condensed Structure

- Single bonds between carbon-hydrogen & carbon-carbon atoms are NOT shown.
- Double and triple bonds are SHOWN.
- All atoms attached to a carbon are written immediately after that carbon.

Skeletal Structure

- Shows only the carbon skeleton.
- Hydrogen atoms are not written.
- Other atoms such as O, CI, N etc. are shown.

Structural Formula

Molecular formula: C₄H₉Cl

Classification of Carbon Atom

A carbon atom can be classified as

- primary carbon (1°) \rightarrow bonded to 1 C
- secondary carbon (2°) \rightarrow bonded to 2 C
- *tertiary carbon (3°)* \rightarrow bonded to 3 C
- quarternary carbon (4°) \rightarrow bonded to 4 C

Classification of Hydrogen Atom

A hydrogen atom can be classified as

- **Primary hydrogen (1°)** \rightarrow bonded to $1^{\circ}C$
- Secondary hydrogen (2°) \rightarrow bonded to 2° C
- Tertiary hydrogen (3°) \rightarrow bonded to 3° C
- Quarternary hydrogen (4°) → NIL

Example 1:

Practise 1:

Determine the number of primary carbon below.

Practise 2:

Label the secondary carbon below.

Practise 3:

Determine the number of tertiary and quarternery carbon below.

Enhancement 1:

How many a) 2° C atoms b) 3 C atoms c) 4 C atoms d) 1 H atons are present ?

Practise 4:

Draw the;

- (a) Condensed structure
- (b) Expended structure
- (c) Skeletal structure

of C_5H_8

(One double bond, carbon atoms form a five-membered ring)

Answer:

Enhancement 2:

Complete the table below.

Expanded Structure	Condensed Structure	Skeletal Structure
	$CH_3(CH_2)CCl(CH_3)_2$	
		0
$ \begin{array}{c c} H & H \\ H & CH_3 \\ C - C - CH \\ H & H \\ H & CH_3 \end{array} $		

12.3 Functional Group & Homologous

Learning Outcomes:

- Define functional group
- Name functional groups and classify organic compounds according to their functional groups
- Define homologous series and explain general characteristics of its members

Functional Group

is an atom or a group of atoms that determines the chemical properties of a organic compound.

Important of Functional Group

- A basic by which organic compounds are divided into different classes (homologous)
- A basic for *naming* organic compounds
- A particular functional group will always undergo similar types of chemical reactions

Homologous Series

- a series of compounds with similar chemical properties, which each member differs from the next member by a constant -CH₂- unit.
- Members of the same homologous series are called _____.

Homologous Series

- Obey a general formula:
 - Alkane: $C_nH_{2n}+_2$
 - Alkene: C_nH_{2n}
 - Alcohol : $C_nH_{2n+1}OH$
- Differ from the successive homolog by a -CH₂ unit.
- Show a gradual change in the physical properties.
- Have same functional group.
- Have similar chemical properties.
- Can be prepared by similar general methods.

Class of	Functional group		
compound	Structure	Name	Example
Alkane	 -C-C- 		
Alkene	 -C=C-		
Alkyne	-C≡C-		

Class of	Functional group		
compound	Structure	Name	Example
Aromatic			
Haloalkane	X(F,Cl,Br,I)		
Alcohol	-OH		

Class of	Functional group		
compound	Structure	Name	Example
Phenol	-OH		
Ether	– C-O-C –		
Aldehyde	О – С – Н		

Class of	Functional group		
compound	Structure	Name	Example
Ketone	O II R–C–R		
Carboxylic acid	0 – C – OH		
Ester	0 – C-O-C –		

Class of	Functional group		
compound	Structure	Name	Example
Acyl chloride	0 – C – CI		
Anhydride	0 0 - C-O-C -		
Amide	0 - C - N- 		

Class of	Functional group		
compound	Structure	Name	Example
Amine	-NH ₂		
Nitrile	–C ≡N		

Practise 5:

Determine the functional groups of each structures.

Practise 6:

Describe the functional groups in the following structures.

Practise 7:

Label the functional groups in the following structures.

Practise 7:

Classify the following compounds into their respective families.

12.4 Isomerism

Learning Outcomes:

- Define isomerism.
- Explain constitutional isomerism.
 - Chain isomers
 - Positional isomers
 - Functional group isomer

Isomerism

Isomer

compounds with the same molecular formula
but different arrangements of atoms

Isomerism

the existence of two or more organic
compounds with the *same molecular formula but different arrangements of atoms*

A) Structural Isomerism/Constitutional Isomer

Structural isomers – molecules with same molecular formula but different structural formulae (differ in the order of attachment of atoms)

Structural isomerism – isomerism resulting from different order of attachment of atoms

i) Chain/Skeletal Isomerism

- The isomers differ in the structure of their carbon chains (differ in carbon skeleton).
 - Differ in the length of straight chains or branches
 - Possess the same functional group and belong to the same homologous series.
 - Different physical properties.
 - Similar chemical properties.

Example 2: Pentane, C_5H_{12}

ii) Position Isomerism

- Isomers with the same carbon skeleton but differ in the position of a functional group or a substituent group.
 - Generally, similar chemical properties (same functional group).
 - Different physical properties.

Example 3: Butene, C_4H_8

Example 4: C₃H₇Cl

Example 5: C₃H₇Cl

iii) Functional Group Isomerism

- Isomers with same molecular formula but different functional groups and belong to diff. homologous series.
 - Different physical & chemical properties.

Example 6: $C_3H_6O_2$

Example 7: C_3H_6O

Practise 5:

Identify the relationship between the following pairs of compounds.

Practise 6:

QUIZ TIME !

Determine all the possible structural isomers of hexane, C_6H_{14} .

Learning Outcomes:

- Define stereoisomerism.
- Describe *cis-trans* isomerism due to restricted rotation about:
 - C=C double bond
 - C–C single bond in cyclic compounds
- Identify *cis-trans* isomerism of a given structural formula.

B) Stereoisomerism

- Same structural formula; different spatial arrangement of atoms in molecules.
- Occurs only in two classes of compound:
 - Alkenes
 - Cyclic compound

Stereoisomers

Isomers with the same structural formula; different spatial arrangement of their atoms in molecules.

Geometrical (cis-trans) Isomerism

- □ The requirements for geometric isomerism:
 - □ Restricted rotation
 - □ a C=C, double bond in alkenes or
 - a C-C single bond in cyclic compounds
 - Each carbon atom of a site of restricted rotation has two different groups attached to it (different atoms or group of atoms attached to the same C=C bond or C-C in cyclic compounds).

Example 8:

Cis-Isomer – a geometrical isomer which has two similar substituents on the same side of the ring or double bond.

Trans-isomer – a geometrical isomer which two similar substituents on opposite site of the ring or double.

Example 9:

Example 10:

If one of the double bonded carbons have 2 identical groups, geometric isomerism is not possible.

Practise 10:

Draw all the possible structures of cycloalkane with molecular formula C_6H_{12} . Determine which structure can perform cis –trans isomers?

12.5 Reaction of Organic Compound

Learning Outcomes:

- Explain covalent bond cleavage:
 - homolytic
 - heterolytic
- Define electrophile and nucleophile
 - Types of electrophile: Lewis acids, cation & electron deficient sites in organic compound.
 - Types of nucleophile: Lewis bases, anions & electron rich sites in organic compound.

Homolytic Cleavage

- Occurs in a non-polar bond (two atoms of similar electronegativity).
- A single bond breaks symmetrically into two equal parts, leaving each atom with one unpaired electron.
- Formed free radicals.

Example 11: Cleavage of Cl₂

Heterolytic Cleavage

- Occurs in a polar bond involving unequal sharing of electron pair between (two atoms of different electronegativities).
- A single bond breaks **unsymmetrically**.
- Both the bonding electrons are **transferred** to the more electronegative atom.
- Formed
 - Cation/carbocation/carbonium
 - Anion/carbanion.

Heterolytic Cleavage

Practise 11:

Choose the correct type of bond cleavage and products for the following molecules.

	Molecule	Type of bond clea∨age	Product
1.	Br - Br		
	Molecule	Type of bond clea∨age	Product
2.	CH₃ - Br		

Example 12:

Types of Reagents

Electrophile

- means 'electron loving'
- an electron-deficient species and electron-pair acceptor
- attacks a part of a molecule where the electron density is high by accepting an electron pair
- can be either neutral or positively charged ions

Example 13: Electrophile

- \Box cations such as H⁺, H₃O⁺, NO₂⁺, Br⁺ and etc
- **Carbocations** (species with a negative charge on carbon atoms)
- \Box lewis acids such as AICI₃, FeCI₃, BF₃ and etc
- \Box oxidizing agents such as Cl₂, Br₂ and etc

Types of Reagents

Nucleophile

- means 'nucleus loving'
- an electron-rich species and electron-pair donor
- attacks a part of a molecule where the electron density is low by donating an electron pair to form a dative covalent bond
- can be either negative ions or molecules that have at least one lone pair of electrons
Example 14: Nucleophile

- □ anions such as OH⁻, RO⁻, CI⁻, CN⁻ and etc
- **Carbanions** (species with a negative charge on carbon atoms)
- Lewis bases which can donate lone pair electrons such as NH₃, H₂O, H₂S and etc

Learning Outcomes:

- State 4 types of organic reaction:
 - Addition
 - Substitution
 - Elimination
 - Rearrangement

Types of Organic Reactions

There are 4 main types of organic reactions:

- Addition
 - Electrophilic Addition
 - Nucleophilic Addition
- Substitution
 - Electrophilic Substitution
 - Nucleophilic Substitution
 - Free Radical Substitution
- Elimination
- Rearrangement

Examples of electrophilic sites in organic molecules

Molecules with low electron density around a polar bond such as: Examples of nucleophilic sites in organic molecules

molecules with high electron density around the carbon-carbon multiple bond such as,

Addition Reaction Reaction

A reaction in which atoms or groups *added* to adjacent atoms of a multiple bond.

Electrophilic Addition Reaction

- Initiated by an electrophile, accepting electron from an attacking nucleophile
- Typical reaction of unsaturated compounds such as alkenes and alkynes

Nucleophilic Additon Reaction

- Initiated by a nucleophile, which attacks an electrophilic site of a molecule.
- □ Typical reaction of carbonyl compounds.

Substitution Reaction

A reaction in which an atom or group in a molecule is replaced by another atom or group.

Free-radical Substitution

Substitution which involves free radicals as intermediate species.

Electrophilic Substitution Reaction

 Typical reaction of aromatic compounds
The aromatic nucleus has high electron density, thus it is nucleophilic and is prone to electrophilic attack.

Nucleophilic Substitution Reaction

Typical reaction of saturated organic compounds bearing polar bond as functional group, such as haloalkane and alcohol.

Elimination Reaction

atoms or groups are removed from adjacent carbon atoms of a molecule to form a multiple bond (double or triple bond)
Elimination reaction results in the formation of unsaturated molecules

Rearrangement Reaction

- A reaction in which atoms or groups in a molecule change position
- Occurs when a single reactant reorganizes the bonds and atoms

Practise 12:

Name the types of organic reaction involved in the reaction.

Practise 13:

Practise 14:

Name the following reaction equations.

$(CH_3)_2C=O + HCN \rightarrow (CH_3)_2C(OH)CN$

$CH_3CH_2CH_2Br \ \rightarrow \ CH_3CH=CH_2 + HBr$

 $CH_3CH_2CH_2Br + NaCN \rightarrow CH_3CH_2CH_2CN + NaBr$